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Abstract The Harish-Chandra correlation functions, i.e. integrals over compact groups of
invariant monomials

∏
tr(Xp1ΩY q1Ω†Xp2 · · ·) with the weight exp tr(XΩYΩ†) are com-

puted for the orthogonal and symplectic groups. We proceed in two steps. First, the integral
over the compact group is recast into a Gaussian integral over strictly upper triangular com-
plex matrices (with some additional symmetries), supplemented by a summation over the
Weyl group. This result follows from the study of loop equations in an associated two-matrix
integral and may be viewed as the adequate version of Duistermaat–Heckman’s theorem for
our correlation function integrals. Secondly, the Gaussian integration over triangular matri-
ces is carried out and leads to compact determinantal expressions.

1 Introduction

In the study of matrix integrals [1–4], one frequently encounters integrals of the form

ZG =
∫

dΩe− tr(XΩYΩ−1) (1.1)
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over some compact matrix group G, with X and Y two given matrices. By the left and right
invariance of the Haar measure dΩ , this integral is invariant under

X → Ω1XΩ−1
1 , Y → Ω2YΩ−1

2 , (1.2)

and is thus insensitive to the choice of the representative of the orbits of X and of Y under
the (adjoint) action of the group. This enables one to bring the matrices X and Y to some
canonical form, as we shall see below.

The case of reference is the so-called Harish-Chandra–Itzykson–Zuber (HCIZ) inte-
gral [5, 6], where the integration is performed over the unitary group Ω ∈ U(n) and X

and Y are two (anti)Hermitian matrices. By the previous argument, we may with no loss
of generality assume that X and Y are two diagonal (anti)Hermitian matrices of size n,
X = diag(Xi)i=1,...,n, and likewise for Y .

∫

U(n)

dΩe− tr(XΩYΩ†) = const · (det e−XiYj )1≤i,j≤n

Δ(X)Δ(Y )
= const ·

∑

π∈Sn

επ

e− tr(XYπ )

Δ(X)Δ(Y )
, (1.3)

where

Δ(X) =
∏

i<j

(Xi − Xj) (1.4)

is the Vandermonde determinant of the eigenvalues Xi of X and likewise for Δ(Y);
Y π = diag(Yπ(i))i=1,...,n. Further examples are provided by more general Harish-Chandra-
type integrals, where X and Y live in (a matrix representation of) the Lie algebra g of G [5].
For example, G = O(n), X and Y antisymmetric real matrices of size n. In all these cases,
explicit formulae are known, following from a diversity of methods, see below and for ex-
ample [7] for a review and references.

It is desirable to extend these formulae to the “correlation functions” of the integral (1.1),
i.e. integrals of the form

∫

dΩF(X,ΩYΩ−1)e− tr(XΩYΩ−1) (1.5)

with F invariant under (1.2). Such correlation functions provide a deeper probe of these
integrals and, in a physical context, give often access to quantities of interest. They also act
as generating functions of integrals of the form

∫

dΩΩi1j1Ωi2j2 · · ·ΩipjpΩ−1
k1l1

· · ·Ω−1
kplp

e− tr(XΩYΩ−1) (1.6)

i.e. of moments of Ω and Ω† with the Harish-Chandra weight.
Kogan et al. [8], Morozov [9], and Shatashvili [10] made some attempts at computing

correlation functions of the HCIZ integral, i.e. for the unitary group. Morozov’s formula may
be recast into a very compact expression [11] but it is only good at computing correlators
quadratic in Ω , whilst Shatashvili’s formula allows in principle to compute all correlators,
but is not of easy use. In paper [12] two of us have shown how to recast the computation
of correlators of the type (1.5) for the unitary group into a totally different setting. The
method consists in two steps. In step one, the integral is rewritten as a sum of integrals over
upper triangular complex matrices. The formulae of [12] are in some sense a generalization
of Morozov’s, and allow to compute all correlators for the U(n) group in a very simple
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formula. The initial observation was that a Gaussian integral and its polynomial moments
in an hyperplane of dimension d of Mn(C)2 does not depend on the hyperplane (up to
multiplication by a constant Jacobian), and thus, one can use either the hyperplane M1 =
M

†
1 ,M2 = M

†
2 or the hyperplane M1 = M

†
2 , which have the same dimension. In the first

hyperplane, after diagonalization of M1 and M2, the integral separates into a radial part
and an angular part proportional to moments of U(n) with the HCIZ measure, while in the
second hyperplane, after Schur decomposition of M1, the integral separates into a radial part
(identical to the one in the first hyperplane), a trivial angular part, and a Gaussian integral
over triangular matrices. As a result, the authors of [12] were able to identify all moments of
the HCIZ integral with a Gaussian integral over complex strictly upper triangular matrices.
The formula reads:

∫

U(n)

dUF(X,UYU †)e− tr(XUYU†)

= cn

Δ(X)Δ(Y )

∑

σ∈�n

(−1)σ e− tr(XYσ )

∫

Tn

dT F (X + T ,Yσ + T †)e− tr(T T †), (1.7)

for X and Y two real diagonal matrices.
In a second step, the Gaussian triangular integrals in the right hand side were computed

in [12], using Wick’s theorem. The computation can be performed explicitly due to the
nilpotent properties of T , which ensures that most Wick’s pairings actually vanish. The
computation is most easily done by recursion on the size n of the matrix, i.e. by integrating
out the last column of T . An appropriate basis of all possible polynomial moments F was
introduced in [12], and in that basis, it was found that:

∫

Tn

dT F (X + T ,Yσ + T †)e− tr(T T †) =
n∏

i=1

M(Xi, Yσ(i)), (1.8)

where F and M(x, y) are matrices of some size R!. The universal matrices M(x, y) have
many remarkable properties, in particular they commute with one another

[M(x, y),M(x ′, y ′)] = 0. (1.9)

The purpose of the present article is to generalize the computations of [12] to other clas-
sical Lie groups. Specifically, we address the computation of (1.5) for G the orthogonal
group O(n) or the symplectic group Sp(2n), with X and Y in the Lie algebra of those groups.
First, we relate H-C correlators over those groups to Gaussian integrals over some set of
triangular matrices, then we compute the latter Gaussian triangular integrals using an appro-
priate basis, and finally we find that the result can again be written as products of the same
matrices M(x, y) which appeared for U(n). Our main results are stated in Theorems 4.3,
5.3 and 6.1 below and in Sect. 7, (see (7.2), (7.3) and (7.4)). The results for the unitary,
orthogonal and symplectic groups may be expressed in a unified way, in terms of the Weyl
group W , Borel subalgebra b and positive roots α, in the following

Theorem 1.1
∫

G

dΩF(Xa,ΩY aΩ−1)e− tr(XaΩYaΩ−1)
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= c
∑

w∈W

e+ tr(Xw(Y ))

∏
α>0 α(X)α(w(Y ))

×
∫

n+=[b,b]
dT F(iX + T , iw(Y ) + T †)e− tr(T T †) (1.10)

for any polynomial function F and for some F -independent constant c; here Xa and Y a

are taken in a Cartan subalgebra, and should thus be thought of as anti-Hermitian matrices
with extra symmetries depending on G, (see Sect. 2 for more details), while iX and iY

are the purely imaginary diagonal matrices with the same eigenvalues as Xa and Y a . In
that form, the derived Borel subalgebra n+ is made of complex strictly upper triangular
matrices, also subject to symmetries. It is thus natural to expect these results to extend to
any simple compact group G, see Conjecture 8.1.

It is our hope that these results should provide a new insight on the common features of
all these integrals.

Our paper is organized as follows. In Sect. 2, we review the known results by Harish-
Chandra and Duistermaat–Heckman and set up the notations. In Sect. 3, we show how
Gaussian integrals over two matrices with reality properties, either antisymmetric real or an-
tiselfdual real quaternionic, may be equated to Gaussian integrals over one complex matrix
constrained by some symmetry requirements. This is established by use of loop equations,
on which we provide details in Appendix 2. Sections 4 and 5 then show how separation
of the angular variables by diagonalization or Schur decomposition leads us to the desired
integrals, which are thus related to integrals over complex triangular matrices (with addi-
tional symmetry requirements). Section 6, supplemented by Appendices 4 and 5, is devoted
to the actual computation of these integrals over triangular matrices, by means of a recursive
method using a diagrammatic method. The final expressions are displayed in Sect. 7, while
Sect. 8 contains our concluding remarks and suggestions of further directions worth explor-
ing. Two other appendices make our notations explicit on quaternions (Appendix 1) or give
additional details on the calculation of some Jacobians (Appendix 3).

2 Overview of Known Results

2.1 The Harish-Chandra Theorem [5]

Following Harish-Chandra, for G a compact connected Lie group, we denote by Ad the
adjoint action of G on its Lie algebra g, by (X,Y ) the nondegenerate invariant inner product
on g, which we take to be the trace of the product XY in our matrix representation, by h ⊂ g

the Cartan subalgebra, and by α(X) the linear action of a root α on X ∈ h. If X and Y ∈ h

Δ(X)Δ(Y )

∫

G

dΩ exp−(X,Ad(Ω)Y ) = 〈π,π〉
|W|

∑

w∈W
ε(w) exp−(X,w(Y )), (2.1)

where w is summed over the Weyl group W , ε(w) = (−1)λ(w), λ(w) is the number of
reflections generating w, and

Δ(X) =
∏

α>0

α(X), (2.2)
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a product over the positive roots of g. Δ(X) may be called a generalized Vandermonde
determinant, since in the case of U(n), it reduces to (1.4) (and (2.1) reduces to (1.3)),
while the expressions for the orthogonal and symplectic groups will be given below. The
constant 〈π,π〉 in the right hand side of (2.1) is computed as follows. Write all the
positive roots in an orthonormal basis εi of root space, i = 1, . . . , �, with � the rank
of g. Regard π = ∏

α>0 α as a polynomial in the positive roots and expand it on sym-
metrized tensor products of the ε, π =∑

mi≥0 p(m1,m2, . . . ,m�)ε
m1
1 · · · εm�

� . Then 〈π,π〉 =
∑

mi≥0(p(m1,m2, . . . ,m�))
2
∏�

i=1 mi !. For g = su(n), one finds 〈π,π〉 =∏n

j=1 j !, while the
expression for the other classical groups will be given below.

2.2 The Duistermaat–Heckman Theorem [13, 14]

The Duistermaat–Heckman theorem states that if M is a symplectic manifold, invariant un-
der a U(1) flow generated by a Hamiltonian H , then for the integral

∫
M eiHt , the stationary

phase approximation is exact: the sum of the values of the integrand at its critical points,
weighted by the Gaussian (‘one-loop’) fluctuations around them, gives the exact integral.

For X and Y in the Lie algebra, consider the integral equation (1.1)

Z =
∫

G

dΩe− tr(XΩYΩ−1).

In such integrals, we first pick a convenient representative of the orbits of elements of the
Lie algebra under the adjoint action of G. A theorem of Cartan asserts that any element
of the Lie algebra is the conjugate (under the adjoint action) of an element of the Cartan
algebra [18]. Thanks to this theorem and to the left and right invariance of the Haar measure
dΩ , one may always assume that X and Y lie in the Cartan subalgebra h. This assump-
tion matches that of Harish-Chandra’s theorem. Moreover the integration is then reduced to
G/T , T a maximal Abelian subgroup (Cartan torus) commuting with Y , or alternatively,
the integration is carried out on the orbit of Y under the action of this quotient. This is a
symplectic manifold, to which Duistermaat–Heckman’s theorem applies [15–17].

We thus first look for the critical points of the ‘action’ tr(XΩYΩ−1) when Ω ∈ G/T . In
other words, we look for solutions in Ω of

δ tr(XΩYΩ−1) = tr(δΩΩ−1[X,ΩYΩ−1]) = 0,

Since A := δΩΩ−1 is arbitrary in g\h, this implies that the component of [X,ΩYΩ−1] in
g\h vanishes. On the other hand, the component of [X,ΩYΩ−1] in h also vanishes, since
if B := [X,ΩYΩ−1] were in h, then tr(B)2 = tr(B[X,ΩYΩ−1]) = tr([B,X]ΩYΩ−1) = 0
since X and B ∈ h commute. We thus conclude that B = 0, i.e. that

[X,ΩYΩ−1] = 0. (2.3)

The critical points are thus the points Ωc ∈ G/T such that (2.3) is satisfied, which for generic
X ∈ h means ΩcYΩ−1

c ∈ h, i.e. Ωc takes the element Y ∈ h to an element ΩcYΩ−1
c ∈ h. If

we denote by W the normalizer of the Cartan torus T quotiented by T , the previous discus-
sion has just proved that the critical points Ωc of the action are in one-to-one correspondence
with elements w of the group W . The group W is known to be the Weyl group of G ([18],
Proposition 15.8). In the sequel, we denote Y w = ΩcYΩ−1

c for w ∈ W .
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At this stage, Duistermaat–Heckman’s theorem thus tells us that

∫

G

dΩe− tr(XΩYΩ−1) =
∑

w∈W

∫

g\h
dAe−[tr(XeAYwe−A)]2 (2.4)

where [· · ·]2 means that we retain only up to the quadratic terms in the expansion in powers
of A ∈ g\h.

The final step in the application of Duistermaat–Heckman theorem is thus to compute
the second order variation of the action at one of these critical points. For Ω = eA, A ∈ g\h,

− tr(XeAY we−A) = − tr(XY w) + 1

2
tr([A,X][A,Y w]) + o(A2). (2.5)

We then have to carry out the Gaussian integration

∫

ddAe
1
2 tr([A,X][A,Yw ])

over the d-dimensional vector A. This (real) dimension d = dimg − dimh = 2r is even and
equal to the number of roots of G. We now expand A, X and Y w in the standard basis A =∑

AαEα , X = ∑
i XiHi and Y w = ∑

i Y
w
i Hi and use the standard commutation relations

and traces tr(HiHj ) = δij , tr(EαEβ) = δα+β,0 to get

tr([A,X][A,Y w]) =
∑

α,β,i,j

AαAβXiY
w
j α(i)β(j) tr(EαEβ)

= −
∑

i,j,α

AαA−α

∑

i

Xiα
(i)
∑

j

Y w
j α(j)

i.e.

tr([A,X][A,Y w]) = −
∑

α

AαA−αα(X)α(Y w)

with a sum over positive and negative roots. This quadratic form has a signature (+r ,−r ),
and upon a suitable contour rotation, the integration over A yields

∫

ddAe
1
2 tr([A,X][A,Yw ]) = constant

∏
α>0 α(X)α(Y w)

.

Putting everything together, we see that we have reconstructed the Harish-Chandra formula.

2.3 Explicit Formulae

It is of course a good exercise to repeat these steps and to write explicit expressions for each
of the classical groups U(n), O(n) and Sp(n). The result for U(n) is well known and has
been recalled above. We shall content ourselves in giving the final result for the two latter
cases. In the orthogonal case O(n), we have to distinguish the n = 2m and n = 2m+1 cases.
In the even case, G = O(2m), we take the X and Y matrices in the block diagonal form

X = diag

((
0 Xj

−Xj 0

)

j=1,...,m

)

, Y = diag

((
0 Yj

−Yj 0

)

j=1,...,m

)

. (2.6)
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Then the critical points Ωc are the product of a permutation τ of the m blocks of Y by a
diagonal matrix of signs diag(t1, . . . , tm), where tj = ±Id2, or in other words, the set W is
Sm × Z

m
2 . Note that W is larger than the ordinary Weyl group of Dm = so(2m) type, which

is W = Sm × Z
m−1
2 : this is because changing the sign of one Yj , say Y1, is performed by

conjugation by a matrix made of 2×2 blocks, Ω = diag(σ1, Id2, . . . , Id2), which is in O(2m)
but not in SO(2m). As a result, only an even number of signs may be changed in the latter
case, whence the factor Z

m−1
2 in the Weyl group. For the O(2m) group that we consider here,

we thus have

Z(O(2m)) = const ·
∑

w=(τ,{ti })

e2
∑

i XiY
w
i

Δ(X)Δ(Y w)
= const ·

∑

τ∈Sm

ετ

∏
i (e

2XiYτi + e−2XiYτi )

Δ(X)Δ(Y )

= const · det(2 cosh(2XiYj ))i,j=1,...,m

Δ(X)Δ(Y )
, (2.7)

where ετ is the signature of the permutation τ , and

Δ(X) =
∏

i<j

(X2
i − X2

j ). (2.8)

For n = 2m + 1, the calculation proceeds along the same line. We write

X = diag

((
0 Xj

−Xj 0

)

j=1,...,m

,0

)

, Y = diag

((
0 Yj

−Yj 0

)

j=1,...,m

,0

)

. (2.9)

The critical points Ωc are again the product of a permutation τ of the m blocks of B by a
matrix of signs, tj = ±Id2, j = 1, . . . ,m, and

Z(O(2m+1)) = const ·
∑

w=(τ,{ti })

e2
∑

i XiY
w
i

Δ(X)Δ(Y w)

= const ·
∑

τ∈Sm

ετ

∏
i (e

2XiYτi − e−2XiYτi )

Δ(X)Δ(Y )

= const · det(2 sinh(2XiYj ))i,j=1,...,m

Δ(X)Δ(Y )
(2.10)

with now

Δ(X) =
∏

i<j

(X2
i − X2

j )

m∏

i=1

Xi. (2.11)

Finally for the symplectic group Sp(2m), it is convenient to use quaternionic notations for
matrices, i.e. to regard the matrix elements as quaternions,1 with coordinates in the standard
quaternion basis, e2

0 = 1; e2
i = −1, i = 1, . . . ,3, e1e2 = e3; alternatively, the matrices may

be regarded as made of 2 × 2 blocks written in terms of the identity matrix Id2 and of Pauli
matrices 
σ (with the identification e0 ↔ Id2, ej ↔ −iσj , j = 1,2,3). The Lie algebra Cm of
Sp(2m) is thus generated by quaternionic real and anti-Hermitean (also called antiselfdual

1We refer the reader to Appendix 1 for more details on our notations on quaternions.
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quaternionic real, see Appendix 1) m×m matrices X, Xij = X0
ij + 
Xij 
e, Xα

ij ∈ R, X = −X†.
Consider the Cartan algebra generated by the m matrices diag(Xje2), j = 1, . . . ,m. We thus
take our matrices X and Y of that form

X = diag(Xje2)j=1,...,m, Y = diag(Yj e2)j=1,...,m. (2.12)

Then, the critical values Ωc are again the product of a permutation τ of the m blocks of Y

by a diagonal matrix of signs, tj = ±1. This leads to

Z(Sp(2m)) = const ·
∑

w=(τ,{ti })

e2
∑

i XiY
w
i

Δ(X)Δ(Y w)

= const ·
∑

τ∈Sm

ετ

∏
i (e

2XiYτi − e−2XiYτi )

Δ(X)Δ(Y )
(2.13)

= const · det(2 sinh(2XiYj ))i,j=1,...,m

Δ(X)Δ(Y )
, (2.14)

with the same expression for Δ(X) as in (2.11). Thus Z(Sp(2m)) has the same form as the
integral over O(2m + 1).

2.4 List of Notations

For the sake of the reader, we list hereafter the non standard notations in the order they
appear in the text.

Δ(X) Vandermonde determinant and generalizations (1.4), (2.2), (2.8), (2.11)
An n × n m real antisymmetric matrices (3.1)
J antidiagonal identity matrix (3.3)
JAn n × n J -antisymmetric complex matrices Sect. 3.1.2 and (3.4)
QAm m × m real quaternionic antiselfdual matrices Sect. 3.2.1 and (3.7)
J̃ antidiagonal symplectic matrix (3.11)
J̃A2m 2m × 2m J̃ -antisymmetric complex matrices Sect. 3.2.2 and (3.13)
Da

n(R) real 2 × 2 block-diagonal antisymmetric n × n

matrices
Sect. 4.1

Mn(C) n × n complex matrices Sect. 4.2
Tn n × n strictly upper triangular complex

matrices
Sect. 4.2

Dn(C) n × n complex diagonal matrices Sect. 4.2
UJ (n) twisted orthogonal matrices (4.5)
T J

n n × n strictly upper triangular
J -antisymmetric complex matrices

(4.6)

DJ
n (C), DJ

n (R) n × n complex, resp. real, J -antisymmetric
diagonal matrices

(4.7), (4.18)

DaR
m (H) m × m real quaternionic diagonal matrices

with elements proportional to e2

Sect. 5.1

UJ̃ (2m) twisted symplectic matrices (5.6)
T J̃

2m 2m × 2m strictly upper triangular
J̃ -antisymmetric complex matrices

(5.7)
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3 Analytical Continuation for Two-Matrix Integrals

In this section, we follow the same strategy as used in [12] for the unitary group: the integrals
of interest (1.5) are regarded as the “angular part” of two-matrix integrals over the classical
Lie algebras so(2m + 1), so(2m) and sp(2m), and the latter may be analytically continued
to integrals over complex matrices with special symmetries.

3.1 Real Antisymmetric Two Matrix Integral and Complex J -Antisymmetric Matrix
Integral

3.1.1 Real Antisymmetric Two Matrix Integral

Consider first the set An of n × n real antisymmetric matrices and consider the measure on
An ×An

dμ(A1,A2) = e− tr(
α1
2 A2

1+ α2
2 A2

2+γA1A2)dA1dA2,

dAk =
∏

1≤i<j≤n

d(Ak)i,j ; k = 1,2.
(3.1)

Then the real antisymmetric two matrix partition function and the associated correlation
functions are defined as

Z2RA =
∫

An×An

dμ(A1,A2),

〈F(A1,A2)〉2RA = 1

Z2RA

∫

An×An

F (A1,A2)dμ(A1,A2)

using the measure dμ(A1,A2) given in (3.1). The partition function is the product of
n(n− 1)/2 uncoupled and equal integrals over the pairs of matrix elements ((A1)ij , (A2)ij ),
i < j . Each integral, of the form

∫
dxdy exp{(x, y)Q(x, y)T }, Q = ( α1 γ

γ α2

)
, is absolutely

convergent if the real part of the quadratic form (x, y)Q(x, y)T := α1x
2 + α2y

2 + 2γ xy is
negative definite, which holds true if Reα1 Reα2 − (Reγ )2 > 0 and Reα1, Reα2 < 0 when
x and y are integrated over the real line. Then the partition function is easily computed to be

Z2RA =
(

π√
δ

) n(n−1)
2

(3.2)

where δ = α1α2 − γ 2. Likewise, for polynomial F(A1,A2), the correlation function 〈F 〉2RA

is by Wick theorem a polynomial in the matrix elements of the propagator Q−1, namely α1
δ

,
α2
δ

and γ

δ
.

3.1.2 Complex J -Antisymmetric Matrix Integral

Define now the n × n antidiagonal matrix J = J−1

J =
⎛

⎝
0 · · · 1
...

...
...

1 · · · 0

⎞

⎠ . (3.3)
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Any matrix M with the property JMT = −MJ is said to be J -antisymmetric. Such a matrix
is antisymmetric with respect to the second diagonal, i.e. Mi,j = −Mn+1−j,n+1−i

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

M1,1 M1,2 · · · M1,n−1 0

M2,1 · · · ... −M1,n−1
...

...
...

Mn−1,1
... −M1,2

0 −Mn−1,1 · · · −M2,1 −M1,1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and in particular, Mij = 0 whenever i + j = n + 1.
On the set JAn of complex J -antisymmetric matrices, we consider the measure

dμ(M) = e− tr(
α1
2 M2+ α2

2 M†2+γM†M)dM,

dM =
∏

i+j<n+1

d ReMi,j d ImMi,j .
(3.4)

Then the complex J -antisymmetric matrix partition function and the associated correla-
tion functions are defined as

Z1JA =
∫

JAn

dμ(M),

〈F(M,M†)〉1JA = 1

Z1JA

∫

JAn

dμ(M)F(M,M†)

using the measure dμ(M) given in (3.4). The partition function is again the product of
the n(n − 1)/2 uncoupled and equal integrals over the complex independent matrix ele-
ments Mij , i + j < n + 1. It is absolutely convergent if Reα1,Reα2 > 0, Reγ < 0 and
Reγ 2 > Reα1α2 and is then given by

Z1JA =
(

π

2
√−δ

) n(n−1)
2

(3.5)

with δ = α1α2 − γ 2 as before. For polynomial F(M,M†), the correlation functions 〈F 〉1JA

are again given by polynomials in α1
δ

, α2
δ

and γ

δ
.

3.1.3 Analytic Continuation

The two families of integrals just studied have close connections, even though their original
domains of convergence may not overlap. The first trivial observation is that in both cases we
have the same number of variables, as already manifest in the computations of the partition
functions, namely n(n − 1) integration variables in both integrals. The second and more
important observation for our purpose is that both integrals share the same loop equations.
This will be proved in Appendix 2. Third, as already stressed above, the correlations of
polynomial invariant functions both in An ×An and in JAn are polynomials in the variables
α1
δ

, α2
δ

and γ

δ
, and thus analytic functions.

From all these observations, we formulate the following
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Theorem 3.1 The polynomial correlation functions of the two real antisymmetric matrix in-
tegral are equal to the correlation functions of the complex J -antisymmetric matrix integral
in the sense of analytic continuation, i.e.

〈F(A1,A2)〉2RA = 〈F(M,M†)〉1JA. (3.6)

Proof Note that the loop equations given in Appendix 2 are in fact recursion relations on
the polynomial degree of the correlation functions. Then the fact that polynomial invariant
correlation functions are polynomials in α1

δ
, α2

δ
and γ

δ
and the fact that the loop equations

and their initial condition (namely 〈1〉 = 1) are the same for both integrals imply that the
polynomials generated from the recursion are the same. �

Although the correlation functions are not originally defined in the same region in para-
meter space, the fact that they are polynomials allows one to analyticly continue them and
to identify them.

3.2 Real Quaternionic Antiselfdual Two Matrix Integrals and Complex J̃ -Antisymmetric
Matrix Integral

In this section we consider another pair of matrix integrals, related to the symplectic group,
for which similar considerations hold true.

3.2.1 Real Quaternionic Antiselfdual Two Matrix Integrals

Consider first the set QAm of real quaternionic antiselfdual (anti-Hermitian) m × m matri-
ces, whose definition has been recalled in Sect. 2.3 and Appendix 1.

On QAm × QAm, we consider the measure given by

dμ(Q1,Q2) = e− tr0(
α1
2 Q2

1+ α2
2 Q2

2+γQ1Q2)dQ1dQ2,

dQk =
(∏

i<j

3∏

α=0

d(Q
(α)
k )i,j

)( m∏

i=1

3∏

α=1

d(Q
(α)
k )i,i

)

; k = 1,2
(3.7)

where tr0(. . .) = 2 Re tr(. . .) is a scalar (while tr(. . .) is in general a quaternion number, see
Appendix 1). The quadratic form in this ‘Gaussian’ measure is thus

− tr0

(
α1

2
Q2

1 + α2

2
Q2

2 + γQ1Q2

)

= 2
∑

1≤i<j≤m

3∑

α=0

(α1(Q
α
1 )2

ij + α2(Q
α
2 )2

ij + 2γ (Qα
1 )ij (Q

α
2 )ij )

+
m∑

i=1

3∑

α=1

(α1(Q
α
1 )2

ii + α2(Q
α
2 )2

ii + 2γ (Qα
1 )ii(Q

α
2 )ii). (3.8)
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The real quaternionic antiselfdual two matrix partition function and the associated correla-
tion functions are defined as

Z2QA =
∫

QAm×QAm

dμ(Q1,Q2),

〈F(Q1,Q2)〉2QA = 1

Z2QA

∫

QAn×QAn

F (Q1,Q2)dμ(Q1,Q2).

(3.9)

The partition function is readily computed to be

Z2QA = 23m

(
π

2
√

δ

)2m2+m

(3.10)

and once again correlation functions of polynomials in Q1,Q2 are polynomials in α1
δ

, α2
δ

,
and γ

δ
.

3.2.2 Complex J̃ -Antisymmetric Matrix Integral

We now introduce a 2m × 2m matrix J̃ = −J̃−1 of the form

J̃ =
(

0 J

−J 0

)

(3.11)

written in terms of J defined above in (3.3). Any matrix M with the property J̃MT = −MJ̃

is said to be J̃ -antisymmetric. Such a matrix possesses a peculiar symmetry with respect to
the second diagonal: we can write it as

M =
(

A B

C D

)

where A, B , C, D are m × m matrices satisfying

A = −JDT J ; JBT = BJ ; JCT = CJ. (3.12)

Thus, under the reflection with respect to the second diagonal, B and C are invariant, while
A and −D are exchanged.

On the set J̃A2m of complex J̃ -antisymmetric matrices we consider the measure

dμ(M) = e− tr(
α1
2 M2+ α2

2 M†2+γM†M)dM,

dM =
∏

i+j≤2m+1

d ReMi,j d ImMi,j .
(3.13)

Then the complex J̃ -antisymmetric matrix partition function and the associated correlation
functions are defined as

Z1J̃A =
∫

J̃A2m

dμ(M),

〈F(M,M†)〉1J̃A = 1

Z1J̃A

∫

J̃A2m

dμ(M)F(M,M†)

(3.14)
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using the measure dμ(M) given in (3.13). The J̃ -antisymmetric partition function reads

Z1J̃A = 22m

(
π

2
√−δ

)2m2+m

, (3.15)

and once again, correlation functions of polynomials in M and M† are polynomials in the
parameters α1

δ
, α2

δ
, and γ

δ
.

3.2.3 Analytic Continuation

Again the observations made in Sect. 3.1.3 extend to this case. The two matrix integrals of
Sects. 3.2.1, 3.2.2 have the same number of integration variables equal to 2m(2m + 1), they
satisfy the same loop equations (see Appendix 2), and their correlation functions of invariant
polynomials have polynomial dependence on α1

δ
, α2

δ
and γ

δ
.

These observations allow us to formulate an analogous analytic continuation theorem for
these two matrix integrals

Theorem 3.2 The polynomial correlation functions of the two real quaternionic antiselfdual
matrix integral are equal to the correlation functions of the complex J̃ -antisymmetric matrix
integral in the sense of analytic continuation, i.e.

〈F(A1,A2)〉2QA = 〈F(M,M†)〉1J̃A. (3.16)

Proof The proof goes exactly as the one in Theorem 3.1. �

4 Correlation Functions over the Orthogonal Group

In this section we exploit the relation found in Theorem 3.1 by performing a separation
between “angular” and “radial” variables of matrices in the two sides of equation (3.6).

4.1 Block-Diagonalization of Antisymmetric Matrices

We first consider the case of antisymmetric matrices and of the orthogonal group O(n)

equipped with its Haar measure dO (normalized to
∫

dO = 1).
As recalled in Sect. 1, Cartan’s theorem asserts that any antisymmetric matrix A may be

brought to the block diagonal form (2.6) or (2.9) by an orthogonal transformation of O(n)

(for this standard result, see also [19, 21, 22]). Denote by Da
n(R) the set of such real block-

diagonal antisymmetric n × n matrices, with the Lebesgue measure:

dX :=
m∏

i

dXi. (4.1)

By an abuse of language, we shall refer to the Xi as the “eigenvalues” of A.
In the new variables {O,X}, the Lebesgue measure in An reads

dA = JacO
n Δ2(X)dOdX (4.2)
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where the Jacobian is (see Appendix 3 for details)

JacO
n =

⎧
⎪⎨

⎪⎩

πm(m−1)2m(m−1)

m!∏m−1
j=1 (2j)! if n = 2m,

πm2
2m2

m!∏m
j=1(2j−1)! if n = 2m + 1.

(4.3)

We recall that Δ(X) takes two different forms (2.8) and (2.11) depending on the parity of n.
This decomposition is unique up to a permutation of the m “eigenvalues”, a change of

signs of each eigenvalue independently, and a multiplication of O by a 2 × 2 block-diagonal
matrix whose diagonal blocks belong to O(2). In other words, A = OXOT establishes a
mapping between An and O(n) × Da

n(R)/(O(2)m × Sm × Z
m
2 ). This overcounting has al-

ready been taken into account in JacO
n .

4.2 Schur Decomposition of Complex J -Antisymmetric Matrices

A less standard result, (see [19–22] for instance), is that any complex matrix M ∈ Mn(C)

can be written as:

M ′ = U ′(Z′ + T ′)U ′† (4.4)

where U ′ ∈ U(n) is a unitary matrix, T ′ ∈ Tn a strictly upper triangular complex matrix
and Z′ ∈ Dn(C) a complex diagonal matrix. We can apply this Schur decomposition to a
J -antisymmetric matrix. This will induce further constraints on the unitary and triangular
matrices.

Define UJ (n) to be the subgroup of U(n) satisfying the condition

U−1 = U † = JUT J (4.5)

with the induced normalized Haar measure. We will call these matrices twisted orthogonal
matrices. Define also T J

n to be the set of n × n strictly upper triangular J -antisymmetric
complex matrices, with the Lebesgue measure:

dT :=
∏

i<j
i+j<N+1

d ReTij d ImTij (4.6)

and DJ
n (C) to be the set of n × n complex J -antisymmetric diagonal matrices

Z = diag(Z1, . . . ,Zm,−Zm, . . . ,−Z1) or

diag(Z1, . . . ,Zm,0,−Zm, . . . ,−Z1),
(4.7)

depending on the parity of n, with the Lebesgue measure:

dZ :=
m∏

i

d ReZid ImZi. (4.8)

Finally we define for these matrices of DJ
n (C)

Δ(Z) =
∏

i<j

(Z2
i − Z2

j ) ×
{

1 if n = 2m,
∏m

i Zi if n = 2m + 1.
(4.9)

With these notations one can prove
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Proposition 4.1 Any J -antisymmetric matrix M may be written as:

M = U(Z + T )U † (4.10)

where U ∈ UJ (n), T ∈ T J
n and Z ∈ DJ

n (C). The Lebesgue measure in JAn is then:

dM = JacUJ

n |Δ(Z)|2dUdT dZ (4.11)

where the Jacobian is

JacUJ

n = JacO
n ×

{
2m−m2

if n = 2m,

2−m2
if n = 2m + 1.

(4.12)

Proof Consider the Schur decomposition (4.4) of the matrix M . Noticing that

det(λ − M) = det(λ − JMJ) = det(λ + M) (4.13)

we immediately see that the non-vanishing eigenvalues come in pairs (λ,−λ). By a possible
redefinition of U , we may always order the eigenvalues in a J -antisymmetric diagonal form
Z as in (4.7). The constraints on U and T follow from the J -antisymmetry of M and Z. The
measure can be computed using the same method as in the appendices of [19]. �

This decomposition is unique up to a permutation of the m different eigenvalues, to
changes of sign of the m eigenvalues and to multiplication of U by a diagonal matrix V ∈
UJ (n) whose elements are on the unit circle. In other words, M = U(Z + T )U † provides
a 1-to-1 mapping between JAn(C) and UJ (n) × T J

n × DJ
n (C)/(U(1)m × Sm × Z

m
2 ). The

overcounting is included in (4.11).

4.3 Orthogonal and Triangular Matrix Integrals

4.3.1 Radial and Angular Integrals

Consider the block-diagonal decomposition of the real antisymmetric matrices and the Schur
decomposition of the J -antisymmetric complex matrices. Using these decompositions we
will rewrite both sides of (3.6).

Theorem 4.1 A matrix integral over An × An can be decomposed into a “radial” and an
“angular” part using the block-diagonal decomposition A = OXOT .

∫

An×An

dμ(A1,A2)F (A1,A2)

= (JacO
n )2

∫

Da
n(R)×Da

n(R)

dXdYΔ2(X)Δ2(Y )

× e− tr(
α1
2 X2+ α2

2 Y 2)

∫

O(n)

dOF(X,OYOT )e−γ tr(XOYOT ) (4.14)

with the notations of (2.8) and (2.11).

Proof The theorem follows from the results of Sect. 4.1. �
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Notice that one of the two orthogonal matrices decouples and so this part of the integral
gives 1. The remaining orthogonal integral represents the relative angular variables.

Theorem 4.2 A matrix integral over JAn can be decomposed into a “radial”, an “angular”
and a “triangular” part using the Schur decomposition M = U(Z + T )U †.

∫

JAn

dμ(M)F(M,M†)

= JacUJ

n

∫

DJ
n (C)

dZ|Δ(Z)|2e− tr(
α1
2 Z2+ α2

2 Z∗2)

× e−γ tr(Z∗Z)

∫

T J
n

dT F(Z + T ,Z∗ + T †)e−γ tr(T †T ) (4.15)

with the notations of (4.9).

Proof The theorem follows from the results of Sect. 4.2. �

Notice that the twisted orthogonal matrix decouples and so this part of the integral
gives 1. Only the triangular and radial parts remain. Notice also that the measure for the
triangular part factors out from that of the radial part and only a Gaussian measure remains
for the triangular part.

4.3.2 Relating Integrals over Orthogonal and Triangular Matrices

In this subsection, we relate the HC integral over the orthogonal group O(n)

IO(n)
F :=

∫

O(n)

dOe−γ tr(XaOYaOT )F (Xa,OY aOT ), (4.16)

with Xa , Y a ∈ Da
n(R), to an integral over complex upper triangular matrices of T J

n (C). Note
first that IO(n)

F is a completely symmetric and even function of the “eigenvalues” Xi and of
the Yi , i = 1, . . . ,m = �n/2�. This is because any permutation or sign changing matrix
acting on either Xa or Y a may be absorbed into a redefinition of the orthogonal matrix O . In
contrast, the integral over complex triangular matrices will have to be symmetrized by hand.

To obtain the desired relation between HC-type integrals over the orthogonal group and
integrals over the triangular matrices of T J

n , we shall follow the same steps as in [12], in
particular of Lemma A.1 there, which asserts that for any polynomial ω in two variables,
one has the relation

∫
C

dzω(z, z∗)e− tr(
α1
2 z2+ α2

2 z∗2+γ z∗z)

∫
C

dze− tr(
α1
2 z2+ α2

2 z∗2+γ z∗Z)
=
∫

R×R
dxdyω(x, y)e− tr(

α1
2 x2+ α2

2 y2+γ xy)

∫
R×R

dxdye− tr(
α1
2 x2+ α2

2 y2+γ xy)
(4.17)

where we have one complex variable integration on the left hand side and two real variables
on the right hand side. This relation may be promoted into the following equality between
integrals over diagonal matrices

∫
DJ

n (C)
dZω(Z,Z∗)e− tr(

α1
2 Z2+ α2

2 Z∗2+γZ∗Z)

∫
DJ

n (C)
dZe− tr(

α1
2 Z2+ α2

2 Z∗2+γZ∗Z)
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=
∫

DJ
n (R)×DJ

n (R)
dXdYω(X,Y )e− tr(

α1
2 X2+ α2

2 Y 2+γXY)

∫
DJ

n (R)×DJ
n (R)

dXdY e− tr(
α1
2 X2+ α2

2 Y 2+γXY)
. (4.18)

We now apply Theorems 4.1 and 4.2 to the two sides of (3.6)

〈F 〉2RA = 1

Z2RA

∫

An×An

dA1dA2e− tr(
α1
2 A2

1+ α2
2 A2

2+γA1A2)F (A1,A2) (4.19)

= (JacO
n )2

Z2RA

∫

Da
n(R)×Da

n(R)

dXadY aΔ2(Xa)Δ2(Y a)e− tr(
α1
2 Xa2+ α2

2 Ya2)

×
∫

O(n)

dOe−γ tr(XaOYaOT )F (Xa,OY aOT ) (4.20)

= 〈F 〉1JA = 1

Z1JA

∫

JAn

dMe− tr(
α1
2 M2+ α2

2 M†2+γMM†)F (M,M†) (4.21)

= JacUJ

n ZDJ
n (C)

Z1JA

1

ZDJ
n (C)

∫

DJ
n (C)

dZ|Δ(Z)|2e+ tr(
α1
2 Z2+ α2

2 Z∗2−γZZ∗)

×
∫

T J
n

dT e−γ tr(T T †)F (iZ + T ,−iZ∗ + T †). (4.22)

In the last line, we have performed a change of variables Z → iZ for reasons that will appear
soon. We then apply (4.18) to get

〈F 〉1JA = JacUJ

n ZDJ
n (C)

Z1JAZDJ
n (R)×DJ

n (R)

∫

DJ
n (R)×DJ

n (R)

dXdYΔ(X)Δ(Y )etr(
α1
2 X2+ α2

2 Y 2−γXY)

×
∫

T J
n

dT e−γ tr(T T †)F (iX + T ,−iY + T †) (4.23)

= JacUJ

n ZDJ
n (C)

Z1JAZDJ
n (R)×DJ

n (R)2
mm!

∫

DJ
n (R)×DJ

n (R)

dXdYΔ2(X)Δ2(Y )etr(
α1
2 X2+ α2

2 Y 2)

×
∑

τ∈Sm
t∈Z

m
2

e−γ tr(XY(τ,t))

Δ(X)Δ(Y(τ,t))

∫

T J
n

dT e−γ tr(T T †)F (iX + T ,−iY(τ,t) + T †). (4.24)

In the last line, we have symmetrized the integral over triangular matrices for the reason
explained at the beginning of this subsection. In these expressions, ZDJ

n (R)×DJ
n (R) = (π/

√
δ)m

and ZDJ
n (C) = (π/2

√−δ)m. We finally compare the integrands of the second and the last
lines (4.19) and (4.23) of the previous equation that we rewrite as

∫

Da
n(R)×Da

n(R)

dXadY aΔ2(Xa)Δ2(Y a)e− tr(
α1
2 Xa2+ α2

2 Ya2)

× (JacO
n )2

Z2RA

∫

O(n)

dOe−γ tr(XaOYaOT )F (Xa,OY aOT )

=
∫

DJ
n (R)×DJ

n (R)

dXdYΔ2(X)Δ2(Y )etr(
α1
2 X2+ α2

2 Y 2)
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× JacUJ

n ZDJ
n (C)

Z1JAZDJ
n (R)×DJ

n (R)2
mm!

∑

τ∈Sm
t∈Z

m
2

e−γ tr(XY(τ,t))

Δ(X)Δ(Y(τ,t))

×
∫

T J
n

dT e−γ tr(T T †)F (iX + T ,−iY(τ,t) + T †) (4.25)

Note the sign difference in the two quadratic forms: if X ∈ DJ
n (R) has eigenvalues Xi ,

and Xa ∈ Da
n(R) is of the form (2.6) or (2.9), then tr(Xa2) = −2

∑m

i=1 Xi = − tr(X)2, and
likewise for Y , so that the Gaussian measures match. This justifies a posteriori our change
of Z → iZ.

In order to identify the two integrands (the second and fourth lines of (4.25)), we notice
that by definition these integrands belong to L2(R2m) with respect to the measure given by
the first and third lines of (4.25). Now we proceed as in [12]: by multiplying F(X,Y ) by
arbitrary polynomials of X, resp. Y , we may multiply the integrands on both sides by arbi-
trary symmetric even polynomials of the Xi or of the Yj . By projecting onto the orthogonal
polynomials basis of L2(R2m) with respect to the measure, we deduce that the integrands
must be equal. This gives the

Theorem 4.3 For any invariant polynomial function F(., .) and any Xa,Y a ∈ Da
n(R), and

X,Y the corresponding matrices in DJ
n (R), one has:

∫

O(n=2m)
O(n=2m+1)

dOe−γ tr(XaOYaOT ) F (Xa,OY aOT )

= cn

∑

τ∈Sm

∑

t∈Z
m
2

ετ

eγ tr(XY(τ,t))

Δ(X)Δ(Y )

∫

T J
n

dT e−γ tr(T †T )F (iX + T , iY(τ,t) + T †)

×
{

1
∏

i ti
(4.26)

where

cn = JacUJ

n Z2RAZDJ
n (C)

(JacO
n )2Z1JAZDJ

n (R)×DJ
n (R)2

mm! = 2
n(n−1)

2

4mm!JacO
n

. (4.27)

In (4.26) the dependence on τ and the signs ti has been made more explicit, and all ti
changed into their opposite.

4.3.3 Examples

Take as an example the case F(A,B) = 1. Then

∫

O(2m)
O(2m+1)

dOe−γ tr(XaOYaOT )

= cn

∑

τ∈Sm

∑

t∈Z
m
2

ετ

∏m

i=1 e2γXiY(τ,t)(i)

Δ(X)Δ(Y )

∫

T J
n

dT e−γ tr(T †T ) ×
{

1,
∏

i ti .
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Merging the constant cn and the triangular integral which decouples into a constant Kn

we get just a summation over permutations and signs.

∫

O(2m)
O(2m+1)

dOe−γ tr(XaOYaOT )

= Kn

∑

τ∈Sm

∑

t∈Z
m
2

ετ

∏m

i=1 e2γXiY(τ,t)(i)

Δ(X)Δ(Y )
×
{

1,
∏

i ti

= Kn

Δ(X)Δ(Y )

∑

τ∈Sm

ετ

m∏

i=1

[e2γXiYτ(i) ± e−2γXiYτ(i) ]

= Kn

Δ(X)Δ(Y )
×
{

det 2 cosh(2γXiYj ),

det 2 sinh(2γXiYj )
(4.28)

with

Kn = cn

∫

T J
n

e−γ tr(T †T ). (4.29)

Then with

∫

T J
n

e−γ tr(T †T ) =
⎧
⎨

⎩

(
π
2γ

)m(m−1)
if n = 2m,

(
π
2γ

)m2

if n = 2m + 1
(4.30)

we obtain

Kn =

⎧
⎪⎨

⎪⎩

∏m−1
j=1 (2j)!

2mγ m(m−1) if n = 2m,

∏m
j=1(2j−1)!
2mγ m2 if n = 2m + 1.

(4.31)

This is exactly what was obtained by the Duistermaat–Heckman theorem in Sect. 1.3 and
serves as a check of our formulae.

5 Correlation Functions over the Symplectic Group

In this section we repeat the analysis made in Sect. 4, in the case related to the symplectic
group Sp(2m) of 2m × 2m symplectic matrices and to Theorem 3.2. Following the same
steps we perform the separation between “angular” and “radial” variables of matrices in
both sides of (3.16).

5.1 Diagonalization of Real Quaternion Antiselfdual Matrices

We consider the set DaR
m (H) of real quaternion diagonal m × m matrices whose diagonal

elements are real quaternions proportional to e2 (see (2.12)), with the Lebesgue measure:

dX :=
m∏

i

dXi. (5.1)
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Appealing again to Cartan’s theorem, as we did in Sect. 1.4, any real antiselfdual quaternion
matrix Q ∈ QAm may be written under the form

Q = SXS† (5.2)

where S ∈ Sp(2m) and X ∈ DaR
2m(H).

The Lebesgue measure in QAm is then:

dQ = JacSp

2mΔ2(X)dSdX (5.3)

with (see Appendix 3)

JacSp

2m = πm2
2m

m!∏m

j=1(2j − 1)! (5.4)

and Δ(X) as in (2.11).
This decomposition is unique up to a permutation of the m eigenvalues, up to a change of

sign of each eigenvalue independently, and up to multiplication of S by a diagonal quater-
nion matrix V ∈ Sp(2m) whose diagonal elements vi satisfy

vi = cos θi + sin θie2; θi ∈ [0,2π). (5.5)

The latter matrices generate a group isomorphic to O(2)m. In other words, Q = SXS† pro-
vides a 1-to-1 mapping between QAm and Sp(2m) × DaR

m (H)/(O(2)m × Sm × Z
m
2 ).

5.2 Schur Decomposition of Complex J̃ -Antisymmetric Matrices

Let UJ̃ (2m) be the subgroup of U(2m) unitary group satisfying the condition

U−1 = U † = J̃UT J̃−1 (5.6)

with the induced normalized Haar measure. We will call these matrices twisted symplectic
matrices.

Define also T J̃
2m to be the set of 2m × 2m strictly upper triangular J̃ -antisymmetric com-

plex matrices, with the Lebesgue measure:

dT :=
∏

i<j
i+j≤2m+1

d ReTij d ImTij . (5.7)

The 2m × 2m J -antisymmetric complex diagonal matrices of DJ
2m(C), (see Sect. 4.2), are

also J̃ -antisymmetric and come with the Lebesgue measure (4.8). Then we prove

Proposition 5.1 Any J̃ -antisymmetric complex matrix M may always be written as

M = U(Z + T )U † (5.8)

where U ∈ UJ̃ (2m), T ∈ T J̃
2m and Z ∈ DJ

2m(C).
The Lebesgue measure in J̃An is then:

dM = JacUJ̃

2m |Δ(Z)|2dUdT dZ (5.9)
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where again Δ(Z) =∏
i<j (Z

2
i − Z2

j )
∏m

i Zi and

JacUJ̃

2m = 2−2mJacSp

2m. (5.10)

Proof Similarly to the J -antisymmetric case one can see that

Det(λ − M) = Det(−λ − J̃MJ̃ ) = Det(λ + M) (5.11)

so that the eigenvalues come in pairs (λ,−λ). One may reorder them to make Z as well as
M J̃ -antisymmetric and then the constraints on U and T follow. Again the computation of
the measure follows the lines of [19]. �

This decomposition is unique up to a permutation of the m different eigenvalues, up to
changes of sign of the m eigenvalues and up to multiplication of U by a diagonal matrix
V ∈ UJ̃ (2m) whose elements are on the unit circle.

In other words, M = U(Z + T )U † provides a 1-to-1 mapping between J̃A2m and
UJ̃ (2m) × T J̃

2m × DJ̃
2m(C)/(U(1)m × Sm × Z

m
2 ).

5.3 Symplectic and Triangular Matrix Integrals

5.3.1 Radial and Angular Integrals

Consider the diagonal decomposition of the real antiselfdual quaternion matrices and the
Schur decomposition of the J̃ -antisymmetric complex matrices. Using them we will rewrite
both sides of (3.16). With the measure dμ(Q1,Q2) defined in (3.7), we have the

Theorem 5.1 A matrix integral over QAm × QAm can be decomposed into a “radial” and
an “angular” part using the diagonal decomposition Q = SXS†. We have:

∫

QAm×QAm

dμ(Q1,Q2)F (Q1,Q2)

= (JacSp

2m)2
∫

DaR
m (H)×DaR

m (H)

dXdYΔ2(X)Δ2(Y )

× e− tr0(
α1
2 X2+ α2

2 Y 2)

∫

Sp(2m)

dS F(X,SYS†)e−γ tr0(XSYS†).

Proof The theorem follows from what is explained in Sect. 5.1. �

Notice that one of the two symplectic matrices decouples and so this part of the integral
gives 1. The remaining symplectic integral runs over the relative angular variables.

Theorem 5.2 A matrix integral over J̃A2m can be decomposed into a “radial”, an “angu-
lar” and a “triangular” part using the Schur decomposition M = U(Z + T )U †. We have:

∫

MJ̃
2m

(C)

dμ(M)F(M,M†)

= JacUJ̃
2m

∫

DJ̃
2m

(C)

dZ|Δ(Z)|2e− tr(
α1
2 Z2+ α2

2 Z∗2)e−γ tr(Z∗Z)

×
∫

T J̃
2m

dT F(Z + T ,Z∗ + T †)e−γ tr(T †T ).
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Proof The theorem follows from what is explained in Sect. 5.2. �

Notice that the twisted symplectic matrix decouples and so this part of the integral
gives 1. Only the triangular and radial parts remain. Notice also that the measure for the
triangular and the radial part factors out and so only a Gaussian measure remains for the
triangular part.

5.3.2 Relating Integrals over Symplectic and Triangular Matrices

Just as in the orthogonal case, we first observe that the integral over the symplectic group

ISp(2m) :=
∫

Sp(2m)

dSe−γ tr(X)SYS†
F(X,SYS†) (5.12)

with X,Y ∈ DaR
m (H), is a completely symmetric and even function of the variables Xi and

of the Yi , i = 1, . . . ,m, since permutation and sign changing matrices may be absorbed into
the symplectic matrix S. Then the same considerations as in Sect. 4.3.2 apply when we
want to use (4.18). The Gaussian measure still gets the wrong sign, and the same change of
variables Z → iZ must be used. Then

Theorem 5.3 For any polynomial invariant function F(., .), for any Xa,Y a ∈ DaR
m (H) and

X,Y the associated matrices in DJ
2m(R), one has:

∫

Sp(2m)

dSF(Xa,SY aS†)e−γ tr0(XaSYaS†)

= c̃2m

∑

τ∈Sm

∑

t∈Z
m
2

ετ

m∏

j=1

tj
eγ tr(XY(τ,t))

Δ(X)Δ(Y )

×
∫

T J̃
2m

dT F(iX + T , iY(τ,t) + T †)e−γ tr(T †T )

with

c̃2m =
(−1)mJacUJ̃

2mZ2QAZDJ
2m

(C)

(JacSp

2m)2Z1J̃AZDaR
m (H)×DaR

m (H)2
mm! = 1

2mm!JacO
2m

1

4m
. (5.13)

Proof The proof starts from (3.16), makes use of Theorems 5.1 and 5.2, and then follows
the same steps as the proof of Theorem 4.3, including a change of variables Z → iZ, a sym-
metrization in the variables Xi and Yj and the use of orthogonal polynomials. �

5.3.3 Examples

Let’s take as an example the case F(A,B) = 1. Then
∫

Sp(2m)

dSe−γ tr(SXaS†Ya)

= c̃2m

∑

τ∈Sm

∑

t∈Z
m
2

ετ

m∏

j=1

tj

∏m

i=1 e2γ t (i)XiYτ(i)

Δ(X)Δ(Y )
×
∫

T J̃
2m

dT e−γ tr(T †T )
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= K̃2m

∑

τ∈Sm

∑

t∈Z
m
2

ετ

m∏

j=1

tj

∏m

i=1 e2γ t (i)XiYτ(i)

Δ(X)Δ(Y )

= K̃2m

det 2 sinh(2γXiYj )

Δ(X)Δ(Y )

with

K̃2m = c̃2m

∫

T J̃
2m

e−γ tr(T †T ). (5.14)

Then with
∫

T J̃
2m

e−γ tr(T †T ) = 2m

(
π

2γ

)m2

(5.15)

we get

K̃2m = 2−(m2+2m)

∏m

j=1(2j − 1)!
2m

(5.16)

which reproduces again the Duistermaat–Heckman result.
In the examples considered in this section and in Sect. 4.3.3, the triangular integrals are

just constants, which is not the case in general. We are going to present an explicit formula
to compute them.

6 J/J̃ -Antisymmetric Triangular Integrals

In order to compute the correlation functions in the orthogonal and the symplectic group
we need to compute explicitly various kinds of triangular integrals. For the orthogonal, resp.
symplectic, case we have to compute integrals over J -, resp. J̃ -, antisymmetric strictly upper
triangular complex matrices. We shall unify both kinds of integrals into one formalism and
explicitly perform the integration.

6.1 Preliminaries to the Integration

The type of integrals we are interested in are of the form

∫ (n)

J
F(X + T ,Y + T †)e−γ tr(T †T )dT (6.1)

where n is the matrix size, J stands for J or for J̃ , and
∫
J refers to whether we integrate

over J or J̃ -antisymmetric triangular matrices, and X and Y are J - (or J̃ -) antisymmetric
diagonal real matrices. Since the measure is Gaussian it is more convenient to normalize the
integrals

〈F(X + T ,Y + T †)〉J =
∫ (n)

J F(X + T ,Y + T †)e−γ tr(T †T )dT
∫ (n)

J e−γ tr(T †T )dT
. (6.2)

From now on we set 2γ = 1, in order to make the propagators simpler.
The typical functions F(A,B) we want to use are constructed from resolvents 1

x−A
and

twisted resolvents J ( 1
x−A

)T J . These functions are not allowed in general by the analytical
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continuation theorems, but this is not a problem if we consider that their x series expansions
are generating functions of invariant polynomials. An example of such a function is

tr

(
1

x1 − (X + T )
J
(

1

y1 − (Y + T †)

)T

J
)

× tr

(
1

x2 − (X + T )
J
(

1

y2 − (Y + T †)

)T( 1

x3 − (X + T )

)T

J

× 1

y3 − (Y + T †)

)

.

The procedure we use to compute this integral consists in integrating over the last column
(and by symmetry, over the first row) of the triangular matrices, so as to find a recursion on
the size n of the matrices, which takes n to n − 2.

Define the submatrices X̂ and Ŷ by

X = diag(α, X̂,−α); Y = diag(β, Ŷ ,−β), (6.3)

and the J -antisymmetric upper-triangular matrices T̂ of size n − 2

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 T12 . . . T1n

...

⎛

⎜
⎝

0
T̂

...
. . .

0 . . . 0

⎞

⎟
⎠

...

Tn−1n

0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (6.4)

With these definitions and the relations

1

x − (X + T )
= 1

x − X

∞∑

n=0

(

T
1

x − X

)n

=
∞∑

n=0

(
1

x − X
T

)n 1

x − X
, (6.5)

we can expand the resolvent of size n in terms of the resolvent of size n − 2 and of the
variables to be integrated out

(
1

x − (X + T )

)

i,j

= δi,1δj,1
1

x − α
+ δi,nδj,n

1

x + α
+ δi,1δj,n

1

x − α
T1,n

1

x + α

+ (1 − δi,1 − δi,n)(1 − δj,1 − δj,n)

(
1

x − (X̂ + T̂ )

)

i,j

+ δi,1(1 − δj,1 − δj,n)
1

x − α

[
j∑

k=2

T1,k

(
1

x − (X̂ + T̂ )

)

k,j

]

+ (1 − δi,1 − δi,n)δj,n

[
n−1∑

l=i

(
1

x − (X̂ + T̂ )

)

i,l

Tl,n

]
1

x + α

+ δi,1δj,n

1

x − α

[
∑

2≤k<l≤n−1

T1,k

(
1

x − (X̂ + T̂ )

)

k,l

Tl,n

]
1

x + α
. (6.6)
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Notice that T1,n in the J -antisymmetric case is identically zero, a fact that will be accounted
for in the following. In both cases, the only independent integration variables are the matrix
elements of the first row. Their propagators are read off the Gaussian weight, which is, in
the J -antisymmetric case

e− 1
2
∑n−1

i=2 (|T1,i |2+|Ti,n|2) = e−∑n−1
i=2 |T1,i |2 (6.7)

while for the J̃ -antisymmetric case it is

e− 1
2
∑n−1

i=2 (|T1,i |2+|Ti,n|2)− 1
2 |T1,n|2 = e−∑n−1

i=2 |T1,i |2− 1
2 |T1,n|2 . (6.8)

The independent nonzero propagators are thus

〈T1,iT
†
j,1〉 = δi,j , 2 ≤ i, j ≤ n − 1,

〈T1,nT
†
n,1〉 = 1 + b

(6.9)

where b = −1 (resp. b = +1) for the J -antisymmetric (resp. J̃ -antisymmetric) case, so
that in the b = −1 case, the propagator for T1,n is zero, as it should. The other propagators
encountered in the integration result from the symmetry properties

〈Ti,nT
†
n,j 〉 = δi,j , 〈T1,iT

†
n,j 〉 = −Ji,j , 〈Ti,nT

†
j,1〉 = −(J −1)i,j . (6.10)

This is what is needed to perform the first step in the recursive computation of the trian-
gular integrals. Let’s take the simplest mixed case.

6.2 Example: Morozov-Like Formula

The simplest case involves two resolvents. Define the two functions

F
(n)
+ (x, y,A,B) = tr

(
1

x − (X + T )

1

y − (Y + T †)

)

+ 1,

F
(n)
− (x, y,A,B) = tr

(
1

x − (X + T )
J
(

1

y − (Y + T †)

)T

J
)

+ b.

The second one, F
(n)
− , is twisted by the action of J . Using that, for A and B two J -

antisymmetric matrices (such as X, Y , T or T̂ ),

J

(
1

x − A

)T

J = 1

x + A
,

J̃

(
1

x − A

)T

(−J̃ ) = 1

x + A
,

(6.11)

i.e. J ( 1
x−A

)T J = b
−x−A

, one sees that F
(n)
− (x, y,A,B) = bF

(n)
+ (x,−y,A,B), thus it suf-

fices to carry out the integration over the last column and first row of F+ only.
The computation goes as follows

〈

tr

(
1

x − (X + T )

1

y − (Y + T †)

)

+ 1

〉

(n)
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=
[

1 + 1

x − α

1

y − β
+ 1

x + α

1

y + β

]

〈1〉(n−2)

+ 1

x2 − α2

1

y2 − β2
〈1〉(n−2)〈T1,nT

†
n,1〉

+
〈

tr

(
1

x − (X̂ + T̂ )

1

y − (Ŷ + T̂ †)

)〉

(n−2)

+ 1

x − α

1

y − β

〈(
1

x − (X̂ + T̂ )

1

y − (Ŷ + T̂ †)

)

k,l

〉

(n−2)

〈T1,kT
†
l,1〉

+ 1

x + α

1

y + β

〈(
1

y − (Ŷ + T̂ †)

1

x − (X̂ + T̂ )

)

k,l

〉

(n−2)

〈Tl,nT
†
n,k〉

+ 1

x2 − α2

1

y2 − β2

〈(
1

x − (X̂ + T̂ )

)

k,l

(
1

y − (Ŷ + T̂ †)

)

k′,l′

〉

(n−2)

× 〈T1,kTl,nT
†
n,k′T

†
l′,1〉. (6.12)

Inserting the propagators given above we find

〈

tr

(
1

x − (X + T )

1

y − (Y + T †)

)

+ 1

〉

(n)

=
[

1 + 1

x − α

1

y − β

][

1 + 1

x + α

1

y + β

]

×
〈

tr

(
1

x − (X̂ + T̂ )

1

y − (Ŷ + T̂ †)

)

+ 1

〉

(n−2)

+
[

1

x2 − α2

1

y2 − β2

]

×
〈

tr

(
1

x − (X̂ + T̂ )
J
(

1

y − (Ŷ + T̂ †)

)T

J
)

+ b

〉

(n−2)

. (6.13)

We have split the two terms in the 〈T1,nT
†
n,1〉 = 1 + b propagator in the following way: the

weight 1 goes together with the untwisted minimal cycle and the weight b with a twisted
one. This is a general rule as we shall see later.

Notice that we need both functions F± in order to close the recursion relation. Defining
the column vector Vn = (F

(n)
+ ,F

(n)
− )T , we obtain a recursion formula for the two functions

in the form

Vn = M(x, y,α,β)Vn−2 (6.14)

where

M(x, y,α,β)

=
((

1 + 1
x−α

1
y−β

)(
1 + 1

x+α
1

y+β

)
1

x2−α2
1

y2−β2

1
x2−α2

1
y2−β2

(
1 + 1

x−α
1

(−y)−β

)(
1 + 1

x+α
1

(−y)+β

)

)

. (6.15)

This structure will appear in the general case.
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6.3 Last-Row/First-Column Integration: General Case

In the general case, the recursion involve combinations of correlation functions conveniently
labeled by graphs.

6.3.1 Basis of Correlation Functions

In the example above, we had to mix correlation functions with two resolvents with cor-
relation functions with a lesser number of resolvents, in order to write recursion relations.
This will still be necessary in the general case, and we shall see that the basis of correla-
tion functions that we have to consider is conveniently labeled by tetrads ω = {σ, τ, s, t} ∈
SR ×SR ×Z

R
2 ×Z

R
2 , made of two permutations of SR of R objects and two sets of R signs.

This integer R will turn out to be the maximal number of resolvents of X-type appearing in
the correlation function. To each such tetrad, we first associate an oriented bicolored graph G

in the following way: G has 2R vertices, R of each color; the ith black (resp. white) vertex
carry a sign s(i) (resp. t (i)), i = 1, . . . ,R. An oriented edge connects each ith black (resp.
white) vertex to the σ(i)th white (resp. τ−1(j)th black) vertex. The graph is thus made of
bicolored cycles.

According to these rules, the graph representation of the tetrad

ω = {(13)(24), (1)(243), (+,+,+,−), (+,−,−,+)} (6.16)

is

For our purposes we are only interested in the relative signs between vertices in each cycle.
We say that two tetrads ω and ω′ are equivalent if they are equal up to independent global
signs in each cycle. We take as representatives of the equivalence classes the tetrads with
s(i) = + for the black vertex with the smallest i in each cycle.

There exists also a graphical representation for the equivalence classes. We call diagrams
these new objects. Since we only care about the relative signs between vertices in the same
cycle, we replace the Z2 variables by symbols representing changes of sign.2 We represent
this with a short bar across the edges indicating the change of orientation of the edge. In the
diagrams, the vertices will be called dots and the edges will be called links. The equivalence
class

[ω] = [{(13)(24), (1)(243), (+,+,+,−), (+,−,−,+)}] (6.17)

is thus represented by the diagram

2This operation is accompanied by a change of orientation of edges, and the cycles are no longer oriented.
But the original class of oriented graphs may be reconstructed from these diagrams.
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In Appendix 5 we prove that the space of equivalence classes of tetrads is isomorphic to
the space of permutations of size 2R, so we can label the equivalence classes [ω] by an
associated permutation π ∈ S2R . This very important bijection will allow us later to relate
the O(n) and the Sp(2m) integrals with the Un group integrals studied in [12].

The correlation functions we need turn out to be labeled by these equivalence classes,
or equivalently by permutations of size 2R. We define in general the [ω] component of the
basis of correlation functions as follows. Consider [ω] = [{σ, τ, s, t}] and consider two sets
of variables, {x1, . . . , xR} for X-type resolvents and {y1, . . . , yR} for Y -type resolvents. Then
we define the following function,

FJ
{σ,τ,s,t}({x}, {y},A,B)

:=
p∏

k=1

(

t (jk,1)δRk,1 + tr

(
Rk∏

l=1

(
1

xik,l
− A

)ζ x (ik,l )

J
η
x→y
k,l

(
1

yjk,l
− B

)ζ y (jk,l )

J
η
y→x
k,l

))

(6.18)

for the J -antisymmetric integrals and

F J̃
{σ,τ,s,t}({x}, {y},A,B)

:=
p∏

k=1

(

δRk,1 + tr

(
Rk∏

l=1

(
1

xik,l
− A

)ζ x (ik,l )

J̃
η
x→y
k,l

(
1

yjk,l
− B

)ζ y (jk,l )

J̃
η
y→x
k,l

))

(6.19)

for the J̃ -antisymmetric ones, where p is the number of cycles of the permutation στ−1,
and Rk is the length of the kth cycle.

The permutations σ and τ ∈ Sm yield the ordering of the labels

σ(ik,l) = jk,l , and τ−1(jk,l) = ik,l+1,

with ik,Rk+1 = ik,r < ik,r , r = 2,Rk, (6.20)

and the signs s, satisfying the constraints

s(ik,1) = +1, (6.21)

together with the signs t define the functions

η
x→y

k,l =
{

0 if s(ik,l) = t (jk,l),

1 if s(ik,l) = −t (jk,l),

η
y→x

k,l =
{

0 if t (jk,l) = s(ik,l+1),

1 if t (jk,l) = −s(jk,l+1)
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and the operations

ζ x(ik,l) =
{

T (ranspose) if s(ik,l) = −1,

I (dentity) if s(ik,l) = 1,

ζ y(jk,l) =
{

T (ranspose) if t (jk,l) = −1,

I (dentity) if t (jk,l) = 1

that perform the twisting of resolvents.
The structure of these functions is easily understood from the diagrams associated to π

(equivalently, [ω]). Each cycle in the diagram represents by a trace; to each dot is attached
a resolvent if the dot is traversed clockwise by an arrow, and a transposed resolvent if it is
counterclockwise; finally each change of orientation in the links corresponds to a J or a J̃

matrix.
The functions are invariant under an independent global twist inside each trace, so the

claim that our prescription depends only on the equivalence classes defined above is justified.
Finally the terms δRk,1 and t (j)δRk,1 in the definition of the functions are the analogues

of the 1 and b appearing in F± in the example of Sect. 6.2. Here too they come only with
the traces containing two resolvents, i.e. Rk = 1.

As an example the [{(1)(2)(3), (1)(23), (+,+,−), (−,−,+)}] component of the basis
for the orthogonal case would be

(

−1 + tr

(
1

x1 − (X + T )
J

(
1

y1 − (Y + T †)

)T

J

))

× tr

(
1

x2 − (X + T )
J

(
1

y2 − (Y + T †)

)T( 1

x3 − (X + T )

)T

× J
1

y3 − (Y + T †)

)

which is represented by the diagram

There is a unified representation for the two bases of correlation functions corresponding
to the orthogonal and symplectic cases. Define NJ =∑

k,l(η
x→y

k,l +η
y→x

k,l ) (which is the total

number of J matrices appearing in the traces), and Π(s) = ∏R

i s(i) for s ∈ Z
R
2 . Then we

have3

FJ
{σ,τ,s,t}({x}, {y},A,B)

= 1

n
tr(J NJ )Π(s)Π(t)

p∏

k=1

(

δRk,1 + tr

(
Rk∏

l=1

1

s(ik,l)xik,l
− A

1

t (jk,l)yjk,l
− B

))

3Here we have used (6.11) in order to remove the J and introduce the signs.
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= 1

n
tr(J NJ )Π(s)Π(t)(FU

π,eπe({x}2R, {y}2R,A,B))
1
2 (6.22)

where π ∈ S2R is the associated permutation following Appendix 5, e, {x}2R and {y}2R are
also defined in that appendix, and FU

π,π ′ is the basis of correlation functions found in [12]
for the unitary case. The sign can be computed through the limit A,B → ∞. We prove the
last equality in Appendix 5.

6.3.2 Recursion Relation

Using this basis we have the following theorem

Theorem 6.1 The functions defined in (6.18) and (6.19) or equivalently in (6.22) satisfy the
recursion relation

〈FJ
{σ,τ,s,t}({x}, {y},X + T ,Y + T †)〉(n)

=
∑

{σ ′,τ ′,s′,t ′}
M {σ ′,τ ′,s′,t ′}

(R){σ,τ,s,t} ({x}, {y}, α,β)

× 〈FJ
{σ ′,τ ′,s′,t ′}({x}, {y}, X̂ + T̂ , Ŷ + T̂ †)〉(n−2) (6.23)

where α and β are the first eigenvalues of X and Y respectively, and Â is the submatrix of
size n − 2 resulting from erasing the first and the last rows and columns of A, and where

M(R){σ ′,τ ′,s′,t ′}
{σ,τ,s,t} ({x}, {y}, α,β)

=
(

R∏

i=1

(

δσ(i),σ ′(i)δs(i),s′(i)δt (π(i)),t ′(π(i)) + 1

s(i)xi + α

1

t (σ (i))yσ(i) + β

))

=
(

R∏

i=1

(

δτ(i),τ ′(i)δs(i),s′(i)δt (τ (i)),t ′(τ (i)) + 1

s(i)xi − α

1

t (τ (i))yτ(i) − β

))

.

Proof The proof of this theorem is given in Appendix 4. �

The first thing to notice is that (see Appendix 5 for a proof) the matrix M is again closely
related to the corresponding recursion matrix M found in [12] for the unitary case. Recall
that

M(2R)

π,π ′ ({x}{y}, ξ, η) =
R∏

i=1

(

δπ(i),π ′(i) + 1

xi − ξ

1

yπ(i) − η

)

, (6.24)

then taking into account the bijection defined in Appendix 5 we find that

M(R){τ,τ ′,t,t ′}
{σ,σ ′,s,s′}({x}R, {y}R,α,β) = M(2R)

π,π ′ ({x}2R, {y}2R,−α,−β) (6.25)

which again connects the orthogonal and symplectic cases with the unitary case. The precise
relation between the arguments of the two sides of this equation is defined in Appendix 5.
Trivial consequences of this fact are the commutativity property of M

[M(R)
({x}, {y}, α,β),M(R)

({x}, {y}, ξ, η)] = 0, (6.26)
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and the symmetry M = MT .
The recursion relation we just found is valid for any value of n such that n ≥ 3. The

special cases n = 2 and n = 1 correspond to the initial condition for the recursion relation
in the even n and odd n case respectively.

6.3.3 Initial Conditions

Let us consider first the case n even. For any n > 2 even, the recursion relation is valid.
The last step for n = 2 requires a slightly more careful analysis. In a 2 × 2 strictly upper
triangular matrix, the only term is T1,2. Since the “last column/first row” integration reduces
to that of T1,2, the procedure explained in Appendix 4 is still valid, and the recursion relation
can be naively applied just by considering that when n = 0, all the traces are equal to zero
in the correlation functions (or equivalently taking the strict limit where xi , yi → ∞ for
i = 1, . . . ,R). This gives us the initial condition vector

(IJ
0 ){σ,τ,s,t} = tr(J NJ )Π(s)Π(t)δσ,τ . (6.27)

Explicitly, the two cases J = J and J = J̃ are

(I J
0 ){σ,τ,s,t} = Π(s)Π(t)δσ,τ ,

(I J̃
0 ){σ,τ,s,t} = δσ,τ .

(6.28)

The case n = 1 corresponds to the case where there is no triangular matrix at all, thus no
integration. The initial condition corresponds in this case to the vector

(I J
1 ){σ,τ,s,t}({x}, {y}) = tr(J NJ )

p∏

k=1

(

t (jk,l)δRk,1 +
Rk∏

l=1

1

xik,l
yjk,l

)

. (6.29)

7 Correlation Functions over O(n) and Sp(2m): The Final Expression

In this section we find a determinantal formula for the correlation functions in Sects. 4 and 5.
We use need the matrix determinant Mdet defined as,

Mdet(M) =
∑

σ∈S(n)

(−1)σ

n∏

i=1

Mi,σ(i) (7.1)

where each Mi,j is a matrix. This means that Mdet(M) is itself a matrix. The ordering of
matrices in the product does not matter if the matrices commute with one another.

• The O(2m) case
Take Theorem 4.3 for n = 2m and the recursion relation found in Sect. 6. After some

algebra we find

∫
O(2m)

dOF(R)(X,OYOT )e−γ tr(XOYOT )

∫
O(2m)

dOe−γ tr(XOYOT )

= Mdet(e2γXkYj M(R)
({x}, {y}, iXk, iYj ) + e−2γXkYj M(R)

({x}, {y}, iXk,−iYj ))k,j=1,...,m

det(2 cosh(2γXkYj ))k,j=1,...,m

I J
0
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=
∑

t∈Z
m
2

Mdet(e2γ tj XkYj M(R)
({x}, {y}, iXk, i tjYj ))k,j=1,...,m

det(2 cosh(2γXkYj ))k,j=1,...,m

I J
0 (7.2)

where F (R) is a vector with (2R)! components, Mdet is a (2R)!× (2R)! matrix and I J
0 is the

vector defined in (6.28).
• The O(2m + 1) case
Take now the n = 2m + 1 part of Theorem 4.3. With the results of Sect. 6 we find

∫
O(2m+1)

dOF(R)(X,OYOT )e−γ tr(XOYOT )

∫
O(2m+1)

dOe−γ tr(XOYOT )

= Mdet(e2γXkYj M(R)
({x}, {y}, iXk, iYj ) − e−2γXkYj M(R)

({x}, {y}, iXk,−iYj ))k,j=1,...,m

det(2 sinh(2γXkYj ))k,j=1,...,m

I J
1 ({x}, {y})

=
∑

t∈Z
m
2

(
m∏

l=1

tl

)
Mdet(e2γ tj XkYj M(R)

({x}, {y}, iXk, itjYj ))k,j=1,...,m

det(2 sinh(2γXkYj ))k,j=1,...,m

I J
1 ({x}, {y}) (7.3)

where I J
1 is given in (6.29).

• The Sp(2m) case
Finally take Theorem 5.3 and the corresponding part of Sect. 6. After some algebra

∫
Sp(2m)

dSF (R)(X,SYS†)e−γ tr(XSYS†)

∫
Sp(2m)

dSe−γ tr(XSYS†)

= Mdet(e2γXkYj M(R)
({x}, {y}, iXk, iYj ) − e−2γXkYj M(R)

({x}, {y}, iXk,−iYj ))k,j=1,...,m

det(2 sinh(2γXkYj ))k,j=1,...,m

I J̃
0

=
∑

t∈Z
m
2

(
m∏

l=1

tl

)
Mdet(e2γ tj XkYj M(R)

({x}, {y}, iXk, itjYj ))k,j=1,...,m

det(2 sinh(2γXkYj ))k,j=1,...,m

I J̃
0 (7.4)

where I J̃
0 is given in (6.28).

8 Concluding Remarks

8.1 A Remark on Contour Deformation in Matrix Integrals

We first return to the transformation of our original integrals over two real antisymmetric,
resp. two antiselfdual real quaternionic, matrices into integrals over J -, resp. J̃ -, antisym-
metric complex matrices. Define the following measure on Mn(C)×Mn(C), the set of pairs
of two complex n × n matrices,

e− tr(
α1
2 M2

1 + α2
2 M2

2 +γM1M2)dM1dM2. (8.1)

We will consider two hyperplanes of Mn(C)×Mn(C) and the measure on these hyperplanes
induced by the measure above.
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The first hyperplane is defined by the equations

Mi = M∗
i ≡ Ai

Ai = −AT
i

}

, i = 1,2 (8.2)

endowed with the induced measure (3.1) reproduces the two real antisymmetric matrix inte-
gral of Sect. 3.1.1. The second hyperplane, which describes one complex J -antisymmetric
matrix, i.e. JAn(C), is defined by the equations

M1 = M
†
2 ≡ M,

JM = −MT J
(8.3)

with the induced measure (3.4).
In this construction, the real antisymmetric two matrix integrals and the complex J -

antisymmetric matrix integrals are nothing but the same integral on different hyperplanes
of Mn(C) × Mn(C). By the counting done above, these two hyperplanes have the same
dimension, and a plausible interpretation of Theorem 3.1 is that it results from a contour
deformation taking the first set of matrix integrals into the second one.

Similarly we can consider two different hyperplanes in the space of pairs of quaternionic
matrices, namely the one defining QAm × QAm

Mi = M∗
i ≡ Qi

Qi = −Qi
†

}

, i = 1,2 (8.4)

with the induced measure (3.7), and the one defining J̃A2m

M1 = M
†
2 ≡ M,

J̃M = −MT J̃
(8.5)

with the induced measure (3.13). Both hyperplanes have the same dimension and we may
again interpret Theorem 3.2 as resulting from a contour deformation.

This apparently much simpler and intuitive approach has the drawback of neglecting
convergence issues. This is the reason why we chose to prove our results by use of loop
equations.

Other choices of deformations to other hyperplanes are also conceivable.

8.2 Comparison with the Duistermaat–Heckman Form

First observe that we may rewrite the main Theorems 4.3 and 5.3 together with Theorem 4-
1 in [12] into a unified form involving an integration over a set TG of complex triangular
matrices, as already mentioned in the Introduction. When G is O(n), Sp(2m) or U(n), TG

corresponds respectively to the set of J , J̃ -antisymmetric, or unconstrained, strictly upper
triangular matrices. Moreover, we notice that in each case, the set TG is precisely the derived
ideal [b,b] =: n+ of the Borel subalgebra b associated with the choice of Cartan algebra
made above. This is in fact the space generated by the positive roots n+ = ⊕α>0 gα .

It is thus natural to conjecture that an analogous formula holds for any compact group,
with the identification of TG with the subalgebra n+:
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Conjecture 8.1 For any compact group G

∫

G

dΩ F(Xa,ΩY aΩ−1)e− tr(XaΩYaΩ−1)

= c
∑

w∈W

e+ tr(Xw(Y ))

∏
α>0 α(X)α(w(Y ))

×
∫

n+=[b,b]
dT F(iX + T , iw(Y ) + T †)e− tr(T T †). (8.6)

This form of our result has to be confronted with the form given by Duistermaat–
Heckman’s localization theorem, (2.4). Note that the integration over n+ plays here the role
played in Sect. 2.2 by the integration over the “fluctuations” A ∈ g\h in (2.4). This points
to a possible much more compact and geometric derivation of our results.

8.3 Other Comments

First, it is remarkable that the recursion on n for triangular integrals involves the same ma-
trix M for all cases U(n), O(n), Sp(2n). Only the initial conditions differ. This fact needs
to be understood, and it shows that the matrix M is universal. Moreover, its commutation
properties suggest the existence of some underlying integrable structure. The symmetries
of the group under consideration are reflected in the symmetries of the spectral parame-
ters at which M is evaluated. The initial conditions also seem to have such symmetries,
and it is remarkable that those symmetries are reminiscent of root lattices of size R or 2R

(we started with a root lattice of size n or 2n). This suggests a duality between R and n,
similar to that of the “supersymmetric” method of evaluation of determinantal correlation
functions [23]. Remarkably, the triangular matrix ensembles as those considered here seem
to play an important role in generalizations of the so-called Razumov–Stroganov conjec-
ture. Indeed multidegrees of the corresponding matrix varieties are solutions of the quantum
Knizhnik–Zamolodchikov equation based on the root systems of type A, B , C and D [24],
thus pointing again towards some possible integrable structure. It might be also interesting to
attack the “angular” integrals considered in this paper with character expansion techniques,
see [25, 26] for recent references.

Our last comment is that it would be highly desirable to know how to compute integrals
like (1.1) on other orbits. For example, little is known about the integral over the O(n) group
when X and Y are symmetric real matrices (see however [27]).
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Appendix 1: Quaternions

We review here some well known facts about quaternions to fix our notations, which follow
basically those of [19]. We shall only consider the set of real quaternions, which is the alge-
bra over R generated by 4 elements: the neutral element e0, which by an abuse of notation



J Stat Phys (2007) 129: 885–935 919

we often write e0 = 1, and ei , i = 1,2,3,

q = q(0)e0 + q(1)e1 + q(2)e2 + q(3)e3, q(α) ∈ R (9.1)

with multiplication e2
i = e1e2e3 = −1, from which it follows that e1e2 = −e2e1 = e3 and its

cyclic permutations. One may represent e0 by Id2 the 2 × 2 identity matrix, and the ei in
terms of 2 × 2 Pauli matrices by

ei = −iσi . (9.2)

The conjugate quaternion of q is defined as

q̄ = q(0)1 − q(1)e1 − q(2)e2 − q(3)e3.

(This is also called hermitian conjugate, which is justified by the fact that Pauli matrices
are hermitian.) Note that qq̄ := |q|2 = |q(0)|2 + |q(1)|2 + |q(2)|2 + |q(3)|2, the square norm
of the quaternion, and hence q �= 0 has an inverse q−1 = q̄/|q|2. Real quaternions form a
non-commutative field. Note also that conjugation reverses the order of factors of a product
(q1q2) = q̄2q̄1.

Quaternionic Matrices

We now consider matrices Q with real quaternionic elements Qij , i, j = 1, . . . ,m. Alterna-
tively, using (9.2), one may regard also Q as a 2m × 2m matrix with 2 × 2 blocks made of
real combinations of Id2 and the Pauli matrices. One may apply to Q the same conjugation
as defined above. One may also transpose Q. The dual QR of a quaternionic matrix Q is the
matrix

(QR)ij = Q̄ji . (9.3)

(This is also the hermitian conjugate Q† of Q in the usual sense.) A real quaternionic matrix
is thus self-dual if

QR = Q = Q† = (Qij ) = (Q̄ji). (9.4)

A real quaternionic matrix is anti self-dual if

QR = Q† = −Q; (9.5)

it is thus anti-hermitian. In particular, its diagonal matrix elements are such that Q
(0)
ii = 0.

On quaternionic matrices, we may define the ordinary trace

tr(Q) =
m∑

i=1

Qii,

which is in general a quaternion, or

tr0(Q) = 2
m∑

i=1

Q
(0)
ii = tr(Q) + tr(Q) (9.6)

which is a scalar. Note that tr0(Q) is nothing else than the trace of the corresponding 2m ×
2m matrix.
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Symplectic Group Sp(2m)

Consider the 2m × 2m matrix

A =
(

0 1m

−1m 0

)

(9.7)

and the associated skew-symmetric bilinear form

(X,Y ) = XT AY =
m∑

i=1

(xiyi+m − yixi+m). (9.8)

The symplectic group Sp(2m) is the group of 2m × 2m matrices leaving this form invariant

ST AS = A. (9.9)

In the basis where XT = (x1, xm+1, x2, xm+2, . . .), the matrix

A = diag

{(
0 1

−1 0

)}

,

and the symplectic group is generated by real quaternionic unitary matrices SR = S† = S−1.

Appendix 2: Loop equations I

In this appendix we show how to compute loop equations in the real antisymmetric two
matrix integral and in the J -antisymmetric complex matrix integral.

10.1 Loop Equations for the 2 Real Antisymmetric Matrix Integral

10.1.1 Loop Equations

Schwinger–Dyson equations, also called loop equations in the case of matrix integrals,
merely amount to saying that the integral of a total derivative vanishes:

0 =
∑

i<j

∫

dA1dA2
∂

∂A1ij

(f (A1,A2)ij e− tr(
α1
2 A2

1+ α2
2 A2

2+γA1A2)) (10.1)

where f (A1,A2) = −f t (A1,A2) is any sufficiently regular matrix valued function; in par-
ticular f can be any non-commutative polynomial in A1 and A2, and may contain also
product of traces of polynomials.

The loop equation thus turns into an equality between expectation values:

〈K1(f )〉 = 〈tr((α1A1 + γA2)f (A1,A2))〉 (10.2)

where

K1(f ) =
∑

i<j

∂f (A1,A2)ij

∂A1ij

. (10.3)
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Notice that K1(f ) is linear and satisfies Leibniz rule:

K1(fg) = K1(f )g + f K1(g). (10.4)

The most general f we shall consider is of the type:

f (A1,A2) = 1

2
(F0(A1,A2) − F0(A1,A2)

T )

R∏

r=1

tr(Fr(A1,A2)) (10.5)

where F0 is an odd degree non commutative monomial of A1 and A2:

F0(A1,A2) = A
l0,0
2 A

k0,1
1 A

l0,1
2 A

k0,2
1 . . .A

l0,p0−1

2 A
k0,p0
1 A

l0,p0
2 (10.6)

and each Fr with r ≥ 1 is an even degree non commutative monomial:

Fr(A1,A2) = A
kr,1
1 A

lr,1
2 A

kr,2
1 . . .A

lr,pr −1
2 A

kr,pr

1 A
lr,pr

2 (10.7)

and we call deg(f ) the total number of matrices A1 + the total number of matrices A2.
Then compute:

K1(F0 − FT
0 )

=
p0∑

q=1

k0,q−1∑

m=0

∑

i<j

[(Al0,0
2 A

k0,1
1 A

l0,1
2 . . .A

lq−1
2 Am

1 )ii(A
k0,q−m−1
1 A

l0,q

2 . . .A
l0,p0
2 )jj

− (A
l0,0
2 A

k0,1
1 A

l0,1
2 . . .A

lq−1
2 Am

1 )ij (A
k0,q−m−1
1 A

l0,q

2 . . .A
l0,p0
2 )ij

− (A
l0,0
2 A

k0,1
1 A

l0,1
2 . . .A

lq−1
2 Am

1 )ji(A
k0,q−m−1
1 A

l0,q

2 . . .A
l0,p0
2 )ji

+ (A
l0,0
2 A

k0,1
1 A

l0,1
2 . . .A

lq−1
2 Am

1 )jj (A
k0,q−m−1
1 A

l0,q

2 . . .A
l0,p0
2 )ii]

=
p0∑

q=1

k0,q−1∑

m=0

[tr(Al0,0
2 A

k0,1
1 A

l0,1
2 A

k0,2
1 . . .A

l0,q−1
2 Am

1 ) tr(A
k0,q−m−1
1 A

l0,q

2 . . .A
l0,p0
2 )

− (−1)k0,1+···+k0,q−1+m+l0,0+···+l0,q−1

× tr(Am
1 A

l0,q−1
2 . . .A

k0,2
1 A

l0,1
2 A

k0,1
1 A

l0,0
2 A

k0,q−m−1
1 A

l0,q

2 . . .A
l0,p0
2 )]. (10.8)

This equality is known as the split rule.
Then we have for any antisymmetric matrix C:

K1(C tr(Fr))

=
pr∑

q=1

kr,q−1∑

m=0

∑

i<j

∑

s

[(Akr,1
1 A

lr,1
2 A

kr,2
1 . . .A

lr,q−1
2 Am

1 )siCij (A
kr,q−m−1
1 A

lr,q

2 . . .A
lr,pr

2 )js

− (A
kr,1
1 A

lr,1
2 A

kr,2
1 . . .A

lr,q−1
2 Am

1 )sjCij (A
kr,q−m−1
1 A

lr,q

2 . . .A
lr,pr

2 )is]

=
pr∑

q=1

kr,q−1∑

m=0

tr(A
kr,1
1 A

lr,1
2 A

kr,2
1 . . .A

lr,q−1
2 Am

1 CA
kr,q−m−1
1 A

lr,q

2 . . .A
lr,pr

2 ). (10.9)
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This equality is known as the merge rule.
Due to Leibniz rule and using repeatedly the split and merge rules, we find that if f has

the form of (10.5) then K1(f ) is a linear combination of monomial invariant functions of
degree ≤ deg(f ) − 1.

The loop equations read:

〈tr(α1A1f + γA2f )〉 = K1(f ),

〈tr(α2A2f + γA1f )〉 = K2(f )
(10.10)

or equivalently:

〈tr(A1f )〉 = α2

δ
K1(f ) − γ

δ
K2(f ),

〈tr(A2f )〉 = α1

δ
K2(f ) − γ

δ
K1(f ).

(10.11)

10.1.2 Polynomial Invariant Functions

F(A1,A2) is a monomial invariant function of two antisymmetric matrices A1,A2, if it is
either:

⎧
⎪⎨

⎪⎩

F = 1 or

F(A1,A2) = tr(A1f (A1,A2)) or

F(A1,A2) = tr(A2f (A1,A2))

(10.12)

where f is of the following form:

f (A1,A2) = F0(A1,A2)

R∏

r=1

tr(Fr(A1,A2)) (10.13)

where F0 is an odd degree non commutative monomial of A1 and A2:

F0(A1,A2) = A
l0,0
2 A

k0,1
1 A

l0,1
2 A

k0,2
1 . . .A

l0,p0−1

2 A
k0,p0
1 A

l0,p0
2 (10.14)

and each Fr with r ≥ 1 is an even degree non commutative monomial:

Fr(A1,A2) = A
kr,1
1 A

lr,1
2 A

kr,2
1 . . .A

lr,pr −1
2 A

kr,pr

1 A
lr,pr

2 (10.15)

and we call deg(F ) the total number of matrices A1 + the total number of matrices A2.
Notice also that f can be antisymmetrized without changing F , and thus f can be taken of
the form of (10.5).

Notice that if deg(F ) is odd, we have:

〈F 〉 = 0 (10.16)

If F = 1, i.e. if deg(F ) = 0 we have:

〈1〉 = 1 (10.17)

and if deg(F ) > 0, and F = tr(A1f ), the loop equations imply:

〈F 〉 = α2

δ
K1(f ) − γ

δ
K2(f ) (10.18)
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where the right hand side is the expectation value of a polynomial invariant function of
degree ≤ deg(F ) − 2. And if deg(F ) > 0, and F = tr(A2f ), the loop equations imply:

〈F 〉 = α1

δ
K2(f ) − γ

δ
K1(f ) (10.19)

where again the right hand side is the expectation value of a polynomial invariant function
of degree ≤ deg(F ) − 2.

In other words, the loop equations allow to compute every expectation of polynomial
invariant functions by recursion on the degree.

Notice also that the expectation value of any monic monomial invariant function is a
polynomial in α1

δ
, α2

δ
and γ

δ
.

10.2 Loop Equations for the Complex J -Antisymmetric Matrix Integral

10.2.1 Loop Equations

Similarly to the previous section, loop equations, in the case of a complex J -antisymmetric
matrix integral, can be written:

0 =
∑

i<j

∫

dM

(
∂

∂ ReMi,n+1−j

− i
∂

∂ ImMi,n+1−j

)

× (f (M,M†)i,n+1−j e− tr(
α1
2 M2+ α2

2 M†2+γMM†)) (10.20)

where f (M,M†) = −Jf (M,M†)T J is any sufficiently regular matrix valued function, in
particular f can be any non-commutative polynomial in M and M†, and may contain also
product of traces of polynomials.

The loop equation thus turns into an equality between expectation values:

〈K1(f )〉 = 〈tr((α1M + γM†)f (M,M†))〉 (10.21)

where

K1(f ) = 1

2

∑

i<j

(
∂

∂ ReMi,n+1−j

− i
∂

∂ ImMi,n+1−j

)

fi,n+1−j . (10.22)

Notice that K1(f ) is linear and satisfies Leibniz rule:

K1(fg) = K1(f )g + f K1(g). (10.23)

The most general f we shall consider is of the type:

f (M,M†) = 1

2
(F0(M,M†) − JF0(M,M†)T J )

R∏

r=1

tr(Fr(M,M†)) (10.24)

where F0(M,M†) is an odd degree non commutative monomial of M and M†:

F0(A1,A2) = M†l0,0Mk0,1M†l0,1Mk0,2 . . .M†l0,p0−1Mk0,p0 M†l0,p0 (10.25)

and each Fr(M,M†) with r ≥ 1 is an even degree non commutative monomial:

Fr(M,M†) = Mkr,1M†lr,1Mkr,2 . . .M†lr,pr −1Mkr,pr M†lr,pr (10.26)
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and we call deg(f ) the total number of matrices M + the total number of matrices M†.
We have

K1(F0 − JFT
0 J )

=
p0∑

q=1

k0,q−1∑

m=0

∑

i<j

[(M†l0,0Mk0,1 . . .M†l0,q−1Mm)i,i

× (Mk0,q−m−1M†l0,q . . .Mk0,p0 M†l0,p0 )n+1−j,n+1−j

− (M†l0,0Mk0,1 . . .M†l0,q−1Mm)i,j (M
k0,q−m−1M†l0,q . . .Mk0,p0 M†l0,p0 )n+1−i,n+1−j

− (M†l0,0Mk0,1 . . .M†l0,q−1Mm)j,i(M
k0,q−m−1M†l0,q . . .Mk0,p0 M†l0,p0 )n+1−j,n+1−i

+ (M†l0,0Mk0,1 . . .M†l0,q−1Mm)j,j (M
k0,q−m−1M†l0,q . . .Mk0,p0 M†l0,p0 )n+1−i,n+1−i]

=
p0∑

q=1

k0,q−1∑

m=0

[tr(M†l0,0Mk0,1 . . .M†l0,q−1Mm)

× tr(Mk0,q−m−1M†l0,q . . .Mk0,p0 M†l0,p0 )

− (−1)l0,0+···+l0,q−1+k0,1+...+k0,q−1+m

× tr(MmM†l0,q−1 . . .Mk0,1M†l0,0Mk0,q−m−1M†l0,q . . .Mk0,p0 M†l0,p0 )]. (10.27)

Notice that the split rule for J -antisymmetric complex matrices is identical to the split rule
for real antisymmetric matrices equation (10.8).

Similarly, we compute the merge rule (where C = −JCT J is any J-antisymmetric com-
plex matrix):

K1(C tr(Fr))

=
pr∑

q=1

k0,q−1∑

m=0

∑

i<j

∑

s

[(Mkr,1 . . .M†lr,q−1Mm)s,i

× Ci,n+1−j (M
kr,q−m−1M†lr,q . . .Mkr,pr M†lr,pr )n+1−j,s

− (Mkr,1 . . .M†lr,q−1Mm)s,j

× Ci,n+1−j (M
kr,q−m−1M†lr,q . . .Mkr,pr M†lr,pr )n+1−i,s]

=
pr∑

q=1

k0,q−1∑

m=0

tr(Mkr,1 . . .M†lr,q−1MmCMkr,q−m−1M†lr,q . . .Mkr,pr M†lr,pr ). (10.28)

And again the merge rule for J -antisymmetric complex matrices is identical to the merge
rule for real antisymmetric matrices equation (10.9).

We conclude that the expectation values of invariant polynomials of M and M† are en-
tirely determined by the same recursion relations (on the degree) as the expectation values
of invariant polynomials of two real antisymmetric matrices. This completes the proof of
Theorem 3.1.
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10.3 Symplectic Case

The procedure to obtain the loop equations for the real quaternionic antiselfdual two-matrix
integral and for the J̃ -antisymmetric complex matrix integral and to prove Theorem 3.2 is
completely analogous to the one above.

Appendix 3: Calculation of Jacobians

In this appendix we are going to detail the main steps for the computation of the Jaco-
bians (4.3), (4.12), (5.4) and (5.9). For this purpose we will need one of the special limiting
cases of the Selberg integral called the Laguerre limit (see for example [19])

I (α, γ,n) =
∫ ∞

−∞
· · ·

∫ ∞

−∞

( ∏

1≤i<j≤n

(x2
j − x2

i )

)2γ
(

n∏

k=1

x2α−1
k e−x2

k

)

dx1 . . .dxn

=
n−1∏

j=0

�(1 + γ + jγ )�(α + jγ )

�(1 + γ )
. (11.1)

The two values of this integral we need are

I

(
1

2
,1,m

)

= m! (
√

π)m

2m(m−1)

m−1∏

j=1

(2j)!, (11.2)

I

(
3

2
,1,m

)

= m! (
√

π)m

2m2

m∏

j=1

(2j − 1)!. (11.3)

The procedure is essentially the same for the four cases. Let us show in detail the first one,
JacO

n .
The following relation holds true by the block-diagonal decomposition shown in Sect. 4.1

∫

An

dAeTr( A2
2 )

= JacO
n

∫ ∞

−∞

∏

1≤i<j≤m

(x2
j − x2

i )
2

{∏m

k=1 e−x2
k dxk if n = 2m,

∏m

k=1 x2
k e−x2

k dxk if n = 2m + 1

= JacO
n

{
I ( 1

2 ,1,m) if n = 2m,

I ( 3
2 ,1,m) if n = 2m + 1.

(11.4)

Computing the Gaussian integral on the left hand side we find

JacO
n = (

√
π)

n(n−1)
2

{
(I ( 1

2 ,1,m))−1 if n = 2m,

(I ( 3
2 ,1,m))−1 if n = 2m + 1

which gives exactly the expression in (4.3).
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The Jacobian JacSp

2m is computed with the same technique from a real quaternionic anti-
selfdual Gaussian integral,

(
1

2

)m(m−1)

(
√

π)m(2m+1) =
∫

QAm

dQeTr0(
Q2
2 ) = JacSp

2mI

(
3

2
,1,m

)

. (11.5)

In order to compute the two remaining Jacobians JacUJ

n and JacUJ̃

2m we need to introduce
two new matrix ensembles. Consider the Hermitean J/J̃ -antisymmetric one-matrix model.
By the J/J̃ -antisymmetry of these matrices we know that they can be put into a triangular
form by a twisted orthogonal or symplectic matrix respectively. By hermiticity we conclude
that the triangular part of this Schur form will be zero, and the diagonal part (eigenvalues)
is real. It is easy to argue that the Jacobians for these transformations have to be the same as
the ones we seek in Sects. 4.2 and 5.2. This allows us to write the following

∫

dHe−Tr( H2
2 ) =

{
(
√

π)
n(n−1)

2 2m−m2
if J = J,

(
√

π)2m2+m2m−m2
if J = J̃

= JacUJ
n

⎧
⎪⎨

⎪⎩

I ( 1
2 ,1,m) if J = J and n = 2m,

I ( 3
2 ,1,m) if J = J and n = 2m + 1,

22mI ( 3
2 ,1,m) if J = J̃ and n = 2m

(11.6)

which gives (4.12) and (5.10).

Appendix 4: Proof of Theorem 6.1

In this appendix we use the graphical representation of the basis of correlation functions
introduced in Sect. 6.3.1 to prove Theorem 6.1. The idea is to identify all possible occur-
rences of elements of the first row and last column of the T matrix (and vice versa for T †)
by means of the decomposition of (6.6); then to use the constraints coming from (i) the
triangular structure of these matrices, (ii) the contractions of indices within traces, (iii) the
propagators (6.9) and (6.10), to represent the result of the integration in a graphical way,
leading to the recursion formulae.

12.1 Last column/first row integration

Take the functions defined in 6.3.1 and their graphical representation. We first rewrite (6.6)
in a slightly reshuffled form

(
1

x − (X + T )

)

i,j

= δi,1δj,n

1

x − α
T1,n

1

x + α

+ δi,1δj,1
1

x − α
+ δi,nδj,n

1

x + α

+
{

δi,1(1 − δj,1 − δj,n)
1

x − α

[
j∑

k=2

T1,k

(
1

x − (X̃ + T̃ )

)

k,j

]



J Stat Phys (2007) 129: 885–935 927

+ (1 − δi,1 − δi,n)δj,n

[
n−1∑

l=i

(
1

x − (X̃ + T̃ )

)

i,l

Tl,n

]
1

x + α

+ δi,1δj,n

1

x − α

[
n−1∑

k<l=2

T1,k

(
1

x − (X̃ − T̃ )

)

k,l

Tl,n

]
1

x + α

}

+ (1 − δi,1 − δi,n)(1 − δj,1 − δj,n)

(
1

x − (X̃ + T̃ )

)

i,j

(12.1)

where α and β are the first eigenvalues of X and Y respectively. We substitute this expres-
sion for each resolvent in the integrand, and perform all possible “contractions” of the T1,k ,
T1,n and Tk,n variables by means of the propagators (6.9). This can be represented as oper-
ations on the diagram associated to the given function. Note that the terms in the last four
lines of (12.1) still contain a resolvent (of size n − 2), while those on the first two lines
do not. Let us now enumerate the operations corresponding to each term in the expansion
equation (12.1):

• Operation 1: The term on the first line, which singles out one T1n variable, removes
one resolvent from the integrand, which is represented by erasing a dot in the diagram.
Since T1,n can only be contracted with T

†
n,1, the appearance of this term forces the erasing

of a dot of the opposite color, by another application of Operation 1 on a y-type resolvent,
somewhere in the diagram. Since this T1n appears in a trace, its left and right neighboring
resolvents must have a T † with one matching index 1 or n. The operation of erasing dots
leaves pairs of free links with only one dot at their end, carrying such a T † variable; their
role and their weight will be reconsidered in Operation 3. The same applies to the other
erased dot. Let us now perform the contraction of the selected T1,nT

†
n,1 pair, giving a factor

(1 + b). The graphical representation is,

⇒ (1 + b)
1

x2
i − α2

1

y2
j − β2

These pairings have to be performed in all inequivalent ways.
• Operation 2: The two terms in the second line play a similar role. They also remove

a resolvent, which is again represented by erasing a dot. This forces one of the neighbors to
be replaced by a similar term. This will be represented by the operation of erasing a link and
its two adjacent dots. The possible configurations are

⇒ 1

xi − α

1

yj − β

⇒ 1

xi + α

1

yj + β

⇒ − 1

xi − α

1

yj + β
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⇒ − 1

xi + α

1

yj − β
.

The signs in the last two equations come from the twist of the erased link. This operation
also leaves some free links.

• Operation 3: All the remaining terms do not remove resolvents so they do not erase
any dot in the diagram. Instead, they represent cuts in the links, since each T1,k and Tk,n

forces a T
†
n,l or T

†
1,l in a neighbor. We must also consider here all free links created by

erasing dots in Operations 1 and 2. As discussed above, these terms contain also a T or a T †

variable at the end of the free link, and will contribute to the weight. Graphically we have

⇒ 1

xi + α

1

yj + β

⇒ 1

xi − α

1

yj − β

⇒ − 1

xi + α

1

yj − β

⇒ − 1

xi − α

1

yj + β

for the cutting, and

1

xi + α
− 1

xi + α

1

xi − α
− 1

xi − α

1

yj − β
− 1

yj − β

1

yj − β
− 1

yj − β

for the free links coming from Operations 1 and 2. In the right column, the bar across the
free link indicates the presence of a J matrix.

• Operation 4: Finally, the only term we did not consider (the one with one resolvent
and no T variable on the last line of (12.1)) accounts for doing nothing to a dot.

Substituting (12.1) for each resolvent is equivalent to performing Operations 1 to 4 on all
dots/links and in all possible ways. After this we have diagrams with free links and missing
dots. The final step is to join the remaining free links. This is equivalent to contracting the
T and T † variables in all possible ways. The gluing of free links gives a trivial weight, so
this final step is just graphical.

Let us illustrate this procedure on the example treated in Sect. 6.2. The following equation
represents the application of Operations 1 to 4 in all possible ways, with their corresponding
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weights.

⎛
⎝ + 1

⎞
⎠ = 1 + 1

x − α

1

y − β
+ 1

x + α

1

y + β

+ (1 + b)
1

x2 − α2

1

y2 − β2
+

+ 1

x − α

1

y − β
+ 1

x + α

1

y + β

+ 1

x2 − α2

1

y2 − β2
(12.2)

In this equation shaded dots and links represent erased dots and links. Notice that this inter-
mediate formula can be identified term by term with formula (6.12). Gluing of the free links
gives

= 1 + 1

x − α

1

y − β
+ 1

x + α

1

y + β
+ (1 + b)

1

x2 − α2

1

y2 − β2

×
(

1 + 1

x − α

1

y − β
+ 1

x + α

1

y + β

)

+ 1

x2 − α2

1

y2 − β2

=
(

1 + 1

x − α

1

y − β

)(

1 + 1

x + α

1

y + β

)

+ 1

x2 − α2

1

y2 − β2

which matches exactly the result (6.13) in Sect. 6.2 but calculated here using the graphical
rules we have defined.

12.2 Computation of the Weight for the Final Diagrams

Consider a reduced problem where no erasing of dots is allowed, i.e. only Operation 3 and 4
are taken into account. In this case only cutting and gluing is allowed and no difference at
the graphical level appears between the J -antisymmetric and the J̃ -antisymmetric cases.

To each link in the final diagram G′ is attached a weight coming from the different ways
we obtain it from the original diagram G. That is, when a link in G′ is part of G, we can
either cut that original link and glue it again, or just do nothing. Instead, if the link in G′

does not belong to G, the only way to obtain it is by gluing cut links. Both contributions
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will add up to

∈ G →
{

(1 + 1
xi+α

1
yj +β

) if the link ∈ G′,
1

xi+α
1

yj +β
if the link /∈ G′,

∈ G →
{

(1 + 1
xi−α

1
yj −β

) if the link ∈ G′,
1

xi−α
1

yj −β
if the link /∈ G′,

∈ G →
{

(1 − 1
xi+α

1
yj −β

) if the link ∈ G′,

− 1
xi+α

1
yj −β

if the link /∈ G′,

∈ G →
{

(1 − 1
xi−α

1
yj +β

) if the link ∈ G′,

− 1
xi−α

1
yj +β

if the link /∈ G′.

Returning now to the original complete problem, where the erasing of dots is allowed,
one notices that the weight found in Operations 1 and/or 2 by erasing a pair of dots is the
same as the one obtained by forming a cycle with this pair of dots with Operations 3 and 4.
Indeed, consider a minimal cycle (i.e. a cycle of length 2) in G′ and erase from G the dots in
this minimal cycle using Operation 1 and if possible Operation 2. Operation 1 contributes a
factor (1 + b); if the minimal cycle in G′ is non twisted, we assign it the weight 1, while if it
is, we assign it the weight b.4 Iterating this operation for all minimal cycles in G′, one finds
that the two procedures, erasing pairs of dots or forming minimal cycles with the same dots,
produce the same weight. A slightly different manipulation is needed when the minimal
cycle is present already in G. The outcome will be the same.

Here is an example of the kind of diagrams which have the same weight within the
complete problem:

M ×

+M ×

where M(G′) ≡ MG′
G is the weight associated with G′, for G the original diagram.

We proved that for the complete problem, the recursion matrix is the same as that of
the reduced problem. Reassembling everything together and using back the sets of signs s

and s ′, we get the recursion matrix

MG′
G =

( ∏

((xi ,s(i)),(xπ(i),s
′(π(i))))∈G′

(

1 + 1

s(i)xi + α

1

s ′(π(i))yπ(i) + β

)

4This is the origin of the additive ±1’s coming with every minimal cycle in the basis of functions equa-
tion (6.18).
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×
∏

((xi ,s(i)),(yπ(i),s
′(π(i))))/∈G′

(
1

s(i)xi + α

1

s ′(π(i))yπ(i) + β

))

×
( ∏

((xi ,s(i)),(yπ ′(i),s′(π ′(i))))∈G′

(

1 + 1

s(i)xi − α

1

s ′(π ′(i))yπ ′(i) − β

)

×
∏

((xi ,s(i)),(yπ ′(i),s′(π ′(i))))�∈G′

(
1

s(i)xi − α

1

s ′(π ′(i))yπ ′(i) − β

))

.

Labeling each diagram using the labels in (6.18), (6.19) and (6.22) we get

M{(τ,t),(τ ′,t ′)}
{(π,s),(π ′,s′)}

=
(

R∏

i=1

(

δπ(i),τ (i)δs(i),t (i)δs′(π(i)),t ′(π(i)) + 1

s(i)xi + α

1

s ′(π(i))yπ(i) + β

))

×
(

R∏

i=1

(

δπ ′(i),τ ′(i)δs(i),t (i)δs′(π ′(i)),t ′(π ′(i)) + 1

s(i)xi − α

1

s ′(π ′(i))yπ ′(i) − β

))

(12.3)

which completes the proof.

Appendix 5: Relations between Orthogonal/Symplectic and Unitary Recursion
Equations

In this appendix we relate tetrads ω = {σ, τ, s, t} introduced in Sect. 6.3.1 and permutations
π ∈ S2R , and more precisely to show the bijection between the set of equivalence classes
[ω] and S2R ; this leads to an important relation between the recursion matrix M and the ba-
sis of correlation functions FJ for the orthogonal/symplectic case and the recursion matrix
M

M(2R)

π,π ′ ({x}, {y}, α,β) =
2R∏

i=1

(

δπ(i),π ′(i) + 1

xi − α

1

yπ(i) − β

)

(13.1)

and the basis of correlation functions FU

FU
π,π ′({x}, {y},A,B) =

p∏

k=1

(

δRk,1 + tr

(
Rk∏

l=1

1

xik,l
− A

1

yjk,l
− B

))

(13.2)

found in [12] in the unitary case.

13.1 Bijection between S2R and Equivalence Classes in SR × SR × Z
R
2 × Z

R
2

Consider pairs of permutations σ and τ belonging to SR , pairs of sets of R signs s and t

belonging to Z
R
2 . As explained in Sect. 6.3.1, σ ◦ τ−1 represents a permutation of R (black)

points with signs s(i) attached to them, and τ ◦ σ−1 a permutation of R (white) points with
signs t (i). To get one representative of the equivalence class [{σ, τ, s, t}], we fix one sign si

in every cycle of σ ◦ τ−1 to be +1.
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Fig. 1 Representation of the bijection. The set of lines, irrespective of their type (solid or dashed) represents
π ∈ S2R . Solid lines represent σ and dashed ones represent τ . The signs s, resp t , are the signs at the
origin, resp. the end, of the solid lines. The arrows, though redundant, are meant to help the reader follow the
iterations 1–4 above

Lemma 13.1 There is a bijection between S2R and the equivalence classes of SR × SR ×
Z

R
2 × Z

R
2 .

Proof To construct the bijection we take a permutation π ∈ S2R . We will relabel the indices
i = 1, . . . ,2R and call them α(i) = 1, . . . ,R,−R, . . . ,−1 (see Fig. 1),

α(i) =
{

i if i ≤ R.

i − (2R + 1) if i > R.

Define also the auxiliary “rainbow” permutation e(i) = 2R − i for which e2 = id and
e(α(i)) ≡ α(e(i)) = −α(i).

With this new labeling we construct the permutations σ and τ and the signs s and t as
follows

• 1. Begin with i = 1
• 2. Set s(|α(i)|) = sgn(α(i)), then j := π(i) and set σ(|α(i)|) = |α(j)|
• 3. Set t (|α(j)|) = sgn(α(j)), then k = eπ−1e(j) and set τ−1(|α(j)|) = |α(k)|
• 4. If we do not close a cycle set i = k and go back to 2.

When we close a cycle of σ ◦ τ−1, (for example, to close the first cycle we must find again
k = 1 at the end of step 3.), we must open a new cycle. To do so, look at which positive



J Stat Phys (2007) 129: 885–935 933

α-type indices we have not used yet and choose the smallest one. Set i equal to this value
and restart from point 2. When there is no positive index left, the last cycle is completed and
the tetrad {σ, τ, s, t} is constructed. �

This procedure is illustrated in Fig. 1: there, the permutation in S2R is π = (1,2,R +
2,2R,R + 3,R + 1,3)(R)(· · ·). Following the above rules we determine from it σ =
(1,2,R,3)(· · ·), τ = (1,3)(2)(R)(· · ·), s = (+,−,+, . . . ,−) and t = (+,+,−, . . . ,−).

Note that the first s sign of every cycle is positive by construction. Note also that con-
versely, constructing π from the tetrad {σ, τ, s, t} can be done with the same kind of pro-
cedure: this is clearly seen in the example. By construction, in this reverse operation, π

depends only on the equivalence class [ω]. Since the method is deterministic in both direc-
tions we have a bijection.

13.2 Relation between M(R)
and M(2R)

Consider now the set of variables

{x}2R = {x1, . . . , xR, xR+1 = −xR, . . . , x2R = −x1},
{x}R = {x1, . . . , xR},
{y}2R = {y1, . . . , yR, yR+1 = −yR, . . . , y2R = −y1},
{y}R = {y1, . . . , yR}

and consider also the pairs of indices

π,π ′ ∈ S2R,

[{σ,σ ′, s, s ′}], [{τ, τ ′, t, t ′}]
∈ Equivalence Classes of SR × SR × Z

R
2 × Z

R
2

(13.3)

where the indices are related through the bijection shown above. Using these definitions it
is easy to verify that

M(R){τ,τ ′,t,t ′}
{σ,σ ′,s,s′}({x}R, {y}R,α,β)

=
(

R∏

i=1

(

δσ(i)τ (i)δs(i)t (i)δs′(σ (i))t ′(σ (i)) + 1

s(i)xi + α

1

s ′(σ (i))yσ(i) + β

))

×
(

R∏

i=1

(

δσ ′(i)τ ′(i)δs(i)t (i)δs′(σ ′(i))t ′(σ ′(i)) + 1

s(i)xi − α

1

s ′(σ ′(i))yσ ′(i) − β

))

=
(

2R∏

i=1

(

δπ(i),π ′(i) + 1

xi + α

1

yπ(i) + β

))

= M(2R)

π,π ′ ({x}2R, {y}2R,−α,−β)

i.e. the two matrices encountered in the orthogonal/symplectic and unitary cases are in fact
the same. In this calculation, we have used the bijection to reexpress the Kronecker δ sym-
bols:

δσ(i),τ (i)δs(i),t (i)δs′(σ (i)),t ′(σ (i)) = δπ(α−1(s(i)i)),π ′(α−1(s(i)i)),
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δσ ′(i)τ ′(i)δs(i)t (i)δs′(σ ′(i))t ′(σ ′(i)) = δπ(α−1(−s(i)i)),π ′(α−1(−s(i)i))

and to relate the {x}R and {y}R variables with the {x}2R and {y}2R variables according to

s(i)xi = xα−1(s(i)i), s ′(σ (i))yσ(i) = yπ(α−1(s(i)i)),

−s ′(σ ′(i))yσ ′(i) = yπ(α−1(−s(i)i)).

13.3 Relation between FJ and FU

Finally consider the basis of correlation functions in the unitary case for 2R X-type and 2R

Y -type resolvents. In particular consider the components FU
π,eπe({x}2R, {y}2R,A,B). Call

[ω] = [{σ, τ, s, t}] the equivalence class of tetrads corresponding to π .
The function FU

π,eπe({x}2R, {y}2R,A,B) can be constructed from the kind of diagrams
shown in Fig. 1 by following the πeπ−1e cycles. These cycles are, by construction, the
same ones we follow with στ−1, with the only difference that π is a permutation of 2R

elements instead of R. Because of this, πeπ−1e contains two different representatives of the
equivalence class [ω], and since the functions FJ are independent of the class representa-
tive, FU contains twice the same function FJ . We can write this as

FU
π,eπe({x}2R, {y}2R,A,B) = (FJ

ω ({x}R, {y}R,A,B))2. (13.4)

The sign in (6.22) is, however, not easy to read from π and e.
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